
Dont get caught, keep your Onions in a Vault1

Humza Ikram*2

Carnegie Mellon University, Pennsylvania, US3

Rumaisa Habib*4

Stanford University, California, US5

Muaz Ali*6

University of Arizona, Arizona, US7

Zartash Afzal Uzmi8

LUMS University, Pakistan9

Abstract10

When web applications wish to operate anonymously, they routinely host themselves as ‘Hidden11

Services’ in the Tor network. However, these services are frequently threatened by deanonymization12

attacks, whereby their IP address and location may be inferred by the authorities. We present13

VaulTor, a novel architecture for the Tor network that ensures an extra layer of security for the14

Hidden Services against deanonymization attacks. In this new architecture, a volunteer (vault) is15

incentivized to host the web application content on behalf of the Hidden Service. The vault runs the16

hosted application in a Trusted Execution Environment (TEE) and becomes the point of contact17

for interested clients. This setup can substantially reduce the uptime requirement of the original18

Hidden Service provider, thereby significantly decreasing the chance of deanonymization attacks19

against them. Using a vault node in place of the hidden service node does not cause any noticeable20

performance degradation when accessing the hosted content.21

2012 ACM Subject Classification Security and privacy → Pseudonymity, anonymity and untrace-22

ability23

Keywords and phrases Tor, anonymity, Hidden Services, Trusted Execution Environments24

Digital Object Identifier 10.4230/OASIcs.NINeS.2026.1725

Funding Rumaisa Habib* : Stanford Graduate Fellowship26

1 Introduction27

The enormous expansion of the world wide web is coupled with growing demands for anonym-28

ity and privacy. Besides a huge end-user client base, an increasing number of web services—29

legal and illegal—also choose to remain anonymous [2], fearing closure, or even prosecution,30

by the government and law enforcement agencies [8]. The Onion Router (Tor) [5] network31

has emerged as one of the most popular solutions for providing anonymity: nearly 3 million32

clients connect to Tor daily [9], and hundreds of thousands of anonymized web addresses are33

published each day, with over 150,000 currently serving traffic to end users [17].34

Tor Hidden Services (aka. Onion services) aim to uphold freedom of speech in repressive35

regimes and offer circumvention in regions of undue and excessive internet censorship, thus36

bringing benefits to the public [58]. At the same time, Hidden Services pave the way for37

criminal activities such as selling illegal drugs and weapons [28]. All in all, there are incent-38

ives for governments and law enforcement to deanonymize Hidden Service (HS) providers1
39

and curb their operations. In 2014, the authorities of 6 European countries and the United40

* These authors contributed equally.
1 Hidden Service Provider is an individual that owns the Hidden Service. They also create and serve the

content of the Hidden Service.

© Humza Ikram, Rumaisa Habib, Muaz Ali, and Zartash Afzal Uzmi;
licensed under Creative Commons License CC-BY 4.0

1st New Ideas in Networked Systems (NINeS 2026).
Editors: Katerina J. Argyraki and Aurojit Panda; Article No. 17; pp. 17:1–17:24

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:humzai@andrew.cmu.edu
https://orcid.org/0009-0009-7072-7989
mailto:rumaisa@cs.stanford.edu
http://www.rumaisahabib.com 
https://orcid.org/0000-0003-1071-1204
mailto:muaz@arizona.edu 
https://orcid.org/0009-0003-8495-0715
mailto:zartash@lums.edu.pk
https://orcid.org/0000-0002-6486-345X
https://doi.org/10.4230/OASIcs.NINeS.2026.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


17:2 Dont get caught, keep your Onions in a Vault

States collaborated in Operation Onymous through which they cracked down on 416 Hidden41

Services, accused them of foul play, and arrested 17 individuals [8].42

We focus on the technical challenges of reinforcing the anonymity of hidden service43

providers. We present VaulTor, a novel overlay architecture that builds upon Tors existing44

HS design by introducing a vault node between the HS provider and clients. The HS provider45

offloads service operation to the vault, which serves clients on the providers behalf. This46

setup strengthens the anonymity of HS providers in three key ways:47

1. After offloading their service, the HS provider may sporadically connect to the vault to48

update content as and when needed, without the need to be online all the time. This49

significantly reduces the attack surface against long-running deanonymization attacks on50

the HS provider.51

2. The HS provider may connect to the vault from widely varying locations, further reducing52

deanonymization risk.53

3. An adversary cannot make an on-demand connection with an HS provider. Communica-54

tion opportunities with the HS provider are now solely available to the vault, and even55

those channels are initiated by the HS provider.56

The service offloaded by the HS provider to the vault is hosted inside a Trusted Execution57

Environment (TEE), such as the one provided by Intel-SGX [40]. Using a TEE brings58

two additional benefits: (i) the vault owner (even with root access) cannot snoop on the59

application code/data while it is being uploaded, served, or stored in the vault, and (ii) since60

client and the HS provider contact the vault through similar encrypted channels, the vault61

is never sure if it is an HS provider or a client it is communicating with, ruling out a myriad62

of attacks against the HS provider (details in Sec 9.1).63

The VaulTor architecture, which has no bearing on the client anonymity (discussed in64

Sec 8.2), promises enhanced anonymity for the HS provider by shifting the deanonymization65

risk to the vault owner (see Sec 8.3 for details). This design choice is suitable as the HS66

providers may only be interested in content creation without taking the deanonymization67

risk that leaps up when serving the content, even as a Tor Hidden Service. In contrast,68

the vault owners are willing to serve the content in exchange for monetary benefits (such as69

crypto payments2) or social incentives (serving content they wish to support and propagate).70

A motivating example for our scenario might be a journalist in an oppressive regime who can71

anonymously upload content banned in their regime to a vault located in a neutral country.72

Another example may be providing ‘on-the-ground’ information from within a region where73

internet outages frequently occur (and the HS provider cannot remain online for extended74

periods).75

VaulTor offers various attractive features not ubiquitous in alternate design choices: (a)76

allows for hosting dynamic services, in contrast to data hosting services such as IPFS or77

pastebin.com, (b) offers content isolation from the server administrator, in contrast to a78

simple (non-TEE based) virtual machine-based approach, and (c) ensures that the server79

administrator cannot snoop on private keys in order to serve arbitrary content on behalf of80

the HS provider.81

VaulTor also brings robustness to the HS operation. If a vault node is shut down by the82

action of authorities, the HS provider can use a different one to make the content available.83

Alternatively, if the HS provider goes offline permanently, the TEE can continue hosting the84

content as long as the vault owner remains incentivized.85

In VaulTor, the vault simply replaces and acts on behalf of the HS provider, responding86

2 We discuss a secure way to do crypto transactions in Section 10.3



H. Ikram, R. Habib, M. Ali, Z. A. Uzmi 17:3

to clients through network paths containing the same number of Tor nodes as if the content87

is served by the HS provider in the existing architecture. Thus, the VaulTor design bears88

no negative impact on the network latency. We do observe a slight average increase in the89

time to first byte and time to last byte (a maximum of 5.7% and 2.9% respectively when90

using Intel-SGX as the TEE), attributed to hosting the content inside a TEE which incurs91

its own performance overhead (9.2.2).92

To understand the operation of VaulTor, we note that a typical Tor circuit is an overlay93

path through three volunteer relay nodes (the entry guard node, a middle node and the exit94

node) on the Tor network [32]. Such a circuit provides one-way anonymity to a client trying95

to connect via the circuit to any non-anonymous server on the web. If the server wants to96

remain anonymous as well, it must also choose another Tor circuit with three nodes [24].97

The existing HS architecture anonymizes both the client and the server (two-way anonymity)98

using a mechanism that stitches the two Tor circuits together (see Sec 2.2). With the99

VaulTor architecture, a server that desires to be anonymous is facilitated to replicate, and100

infrequently update, its web content, and service on the vault. This is similar to a CDN101

node offering content replication to a server. The two-way anonymity continues to exist102

between the vault node and the client, delivering similar delay performance as observed in103

the existing hidden service architecture. Indeed, our results in Sec 9.2.2 confirm this. We104

also consider a sample of popular deanonymization attacks and provide an outline of how105

VaulTor offers enhanced HS provider anonymity under those attacks (see Sec 9.1). We also106

discuss legal and deployability considerations for both HS providers and vault operators in107

Sec 10.5 Altogether, this paper makes the following contributions:108

A novel architecture of Tor nodes, used by VaulTor to provide robust anonymity to host109

Hidden Services (HS).110

Step-wise description of the protocol VaulTor uses to ensure anonymity of the HS provider,111

vault, and the clients.112

A thorough security analysis and description of the attacks that are mitigated by VaulTor.113

A working prototype and its performance measurement over the actual Tor network. The114

prototype is available at: https://github.com/RumaisaHabib/vaultor115

2 Background116

2.1 Trusted Execution Environments (TEEs)117

TEEs provide a platform for secure remote computation which allows securely executing118

an application in a remote untrusted system without compromising the Integrity and Con-119

fidentiality of the application data. Several hardware architectures provide TEE imple-120

mentations [40, 31, 16, 48]. Our prototype implementation leverages the TEE provided by121

Intel-SGX [40] to create a secure execution channel between the vault and the HS provider.122

We host an HS inside the TEE which itself is set-up inside a vault (Sec 7). An instance of123

a program running inside a TEE is called an enclave.124

TEEs provide many guarantees. These include:125

1. Sealing: A program running inside a TEE can encrypt and write data to the disk for126

persistent storage. Only the same program running on the same device in a TEE can127

decrypt this data.128

2. Isolation: A program inside a TEE can not access the memory of its host and vice versa.129

3. Remote Attestation: A piece of code running inside a TEE can prove, to an outside130

observer, what piece of code it is and that it is running inside a TEE.131

NINeS 2026

https://github.com/RumaisaHabib/vaultor


17:4 Dont get caught, keep your Onions in a Vault

A local trusted device may use the following simplified flow for remote attestation to132

verify that a remote untrusted device is running the desired piece of code:133

1. The local device builds the code and gets a measurement of the memory space3.134

2. The local device sends the code to the remote device.135

3. The remote device runs this code inside a TEE.136

4. When running inside a TEE, the code can then request the CPU to generate a crypto-137

graphic hash of the program’s memory space. This hash is then signed by the CPU using138

a secret hardware attestation key embedded in the CPU.139

5. The local device can request this signed measurement from the remote device. It then140

verifies this signature by matching the measurement hash against one computed locally141

and by verifying the signature against its public key.142

We will stick to Intel-SGX terminology, in which the signed cryptographic hash is called143

a quote. Furthermore, it should be noted that a small amount of arbitrary data (produced144

by the code inside the TEE) can be embedded in the quote as well. This data is called the145

REPORTDATA field. Different TEE implementations employ different means for signature146

verification. Intel-SGX, for example, requires sending the quote to Intel’s online Attestation147

Service which verifies that the quote is valid. The local device also has the option to perform148

this attestation via a proxy (such as Tor).149

The REPORTDATA field is crucial for establishing a secure connection with an enclave150

(program running within the TEE). This field routinely contains a public key whose corres-151

ponding private key is known only to the enclave. This public key can then be used to create152

a secure connection with the enclave using any form of key exchange such as Diffie-Hellman.153

2.2 Conventional Tor architecture154

In the current Tor protocol, there are 6 Tor nodes between a client and a hidden service (HS).155

This ensures two-way anonymity, i.e., both the client accessing the HS and the HS provider156

itself remain anonymous. Hidden services are identified using an onion URL. Figure 1 and157

the following points detail the protocol for the establishment of communication between an158

HS and a client in the current architecture.159

1. An HS provider contacts a relay and asks them to act as an Introduction Point (IN)4.160

The HS provider receives an acknowledgment from the IN.161

2. The HS provider creates an “Onion service descriptor” which includes the public key for162

the HS and the IP addresses of its INs. This descriptor is signed by the public key of the163

HS. The HS provider sends this to a HSDir. The HS provider gets an acknowledgement164

from one of many Hidden Service Directories (HSDirs)5.165

3. A client asks the HSDir for the service descriptor of the HS. They receive and verify the166

signature of the HS.167

4. The client picks a Tor relay to act as a Rendezvous Point (RP) and establishes a Tor168

circuit to it. The client gives the RP a Rendezvous cookie.169

5. The client sends the same Rendezvous cookie and the IP address of the RP to an IN.170

6. The IN forwards the cookie and Rendezvous address to the HS provider.171

7. The HS provider makes a Tor circuit with the Rendezvous Point and sends the cookie.172

8. The Rendezvous Point compares the two cookies and, if they match, relays communica-173

tion from both sides to each other.174

3 This includes the code itself, the data, the stack, and the heap.
4 IN is chosen to be distinct from Internet Protocol (IP)
5 HSDirs are special relays that store and provide hidden service descriptors to the clients.



H. Ikram, R. Habib, M. Ali, Z. A. Uzmi 17:5

RPRPRPRP

IN

HSDir

HS

ProviderClient

Figure 1 The current implementation of hidden services. Red paths represent information flow
through Tor circuits with 6 nodes. Green paths represent information flow through Tor circuits with three
nodes. Blue paths represent information flow through Tor circuits with only two nodes.

3 Related work175

There are two notable prior works that leverage TEE technology to improve Tor. In SGX-176

Tor [45], different nodes (such as Directory authority, HSDir, and middle nodes) run the Tor177

software in TEEs so that they cannot be modified to collude and launch deanonymization178

attacks. In contrast, VaulTor reduces the deanonymization threats by not requiring the179

HS provider to be online. Furthermore, VaulTor is an architectural solution that does not180

require any Tor node to run their service within TEE (unless they volunteer to be a vault),181

thus maintaining backward compatibility for Tor nodes.182

Another approach, SmarTor [14], utilizes TEEs and smart contracts to decentralize dir-183

ectory authorities (which are currently a few trusted and centralized servers) in the Tor184

network. The authors argue that this would increase the security of the Tor network as185

it would reduce the need to trust particular servers and make it more difficult for govern-186

mental authorities to crack them down. VaulTor, on the other hand, leverages the privacy187

guarantees provided by the TEEs to create trust by allowing a separate, new entity (the188

vault) to host web application content, thus making it harder to deanonymize the Hidden189

Service provider.190

Additional prior works [7, 20, 55, 62] have also suggested modifications to the Tor network191

to enhance HS anonymity. Sec 10.1 discusses these solutions and their potential use cases.192

There exists a whole body of work aiming to improve the Tor network in general. Security193

improvements include a layered mesh topology [33] for circuit formation and prevention of194

route capture attacks [51]. There has also been work to improve client-side stability in195

censored regions using WebRTC [25, 35, 19].196

Performance improvements include optimizing the Tor path selection algorithm [12, 15,197

59, 65] and load balancing techniques [13, 30, 44]. In particular, CenTor [17] considers198

serving content from multiple CDN-like content replication nodes to improve the content199

delivery time. These improvements can be applied in conjunction with VaulTor to further200

optimize the anonymity network (see Sec 10.1).201

NINeS 2026



17:6 Dont get caught, keep your Onions in a Vault

4 Design Goals202

Our design goals are meant to ensure enhanced anonymity for HS-provider, while ensuring203

that anonymity guarantees for other parties (i.e., client, vault node) remain intact.204

We will outline our design goals succinctly here:205

1. Ensure that the anonymity guarantees for the HS provider in VaulTor are at least as206

strong as an HS provider in the conventional Tor architecture.207

2. Minimize the uptime for the HS provider, shrinking the attack surface against them.208

3. Ensure that the anonymity guarantees for the newly introduced Vault node are at least209

as strong as those for an HS provider in the conventional Tor architecture.210

4. Ensure that the anonymity guarantees for the client remain at least as strong as those211

for a client in the conventional Tor architecture.212

5. Ensure that the HS provider retains full control of any content that is being served on213

its behalf.214

6. Ensure that the system is able to serve rich content (not just limited to static content).215

7. Ensure that the system is backward compatible and is built using off-the-shelf components216

and technology.217

5 Alternate hosting options218

The VaulTor architecture meets all our design goals specified in Sec 4. Other simple alternat-219

ives for anonymous content hosting may not satisfy this requirement. This section considers220

two such possible alternatives and describes why they are unable to achieve the full set of221

our design goals.222

5.1 Using a static content hosting service223

An HS provider may upload static content to a data hosting service like an IPFS. While224

it is possible that the HS provider is able to upload content securely, this content can not225

be modified dynamically and, thus, fails to meet our fifth design goal. For example, an226

HS provider trying to a run a forum online will not be able to get posts or comments by227

clients. VaulTor permits dynamic content to be served which allows the HS provider to host228

complicated websites on an external server.229

5.2 Hosting on the cloud230

An HS provider may host data dynamically on a virtual machine present on an external server231

(or a public cloud). They may use a remote login tool such as SSH (and the Tor proxy) to232

anonymously access the server and upload their content. However, the administrator of the233

server (with root access, or the cloud operator) may be able to access and modify this data234

even if the HS provider wishes to restrict access. This means the provider does not maintain235

full control over the content, violating the fourth design goal.236

In VaulTor, the administrator cannot access data that is present inside the TEE. This237

data exists either in an encrypted manner on the disk or is only accessible to the TEE if the238

data is in the main memory. Lastly, as both the client and HS provider make an encrypted239

channel with the TEE, content is safe while in transit.240

An HS provider that uploads their content to an external server (via SSH or through241

other means) is not guaranteed that this content will be served without modification. The242

administrator of this server may modify this content (while keeping the same URL and x509243



H. Ikram, R. Habib, M. Ali, Z. A. Uzmi 17:7

certificate) and serve content that the administrator desires. This is possible because the244

administrator can snoop the private key from main memory or storage, presenting a major245

threat to client anonymity. On the other hand, VaulTor guarantees that the content served246

to a client is the content intended by the HS provider. The enclave creates a certificate and247

is the only entity (alongside the HS provider) that can serve this content.248

An HS provider may choose to provision cloud services that enable TEEs and host249

their content inside one. In this scenario, the cloud would act as an intermediary, reducing250

the uptime requirement for the HS provider. However, provisioning cloud services isn’t251

anonymous. Know-your-customer (KYC) and/or payments via fiat currency can compromise252

the anonymity of the HS provider. It would also necessitate online transactions, which may253

be untenable in regions of instability, where volunteer vaults may be the only option.254

6 Threat Model255

We make realistic assumptions about the objectives and capabilities of adversaries. An256

adversary may have access to a small fraction of Tor relays and sufficient resources to257

qualify as a guard relay, HSDir, or a vault. Moreover, a malicious vault may be able to258

target specific HSes to host in their machine for the explicit purpose of deanonymizing the259

HS provider and clients of that service or for the purpose of modifying that service. Even a260

strong adversary will have a limited ability to acquire network traffic from ISPs and monitor261

traffic patterns between an end user and a guard node. We wish to protect the anonymity262

of the HS provider from this adversary and retain the control of the HS provider over any263

content that the HS is providing. In addition, a malicious HS may attempt to deanonymize264

a specific vault by hosting their web content on a TEE that the vault runs. As discussed in265

sec 2.1, we do not consider side-channel attacks.266

We also assume that any two entities (amongst the vault, HS provider and client) can267

collude to launch an attack against the third. For example, an HS provider and a client may268

work together in an attempt to deanonymize a vault.269

Moreover, we assume a careful HS provider. That is, we assume that the HS provider270

does not leak identifying information in the content it provides. Furthermore, at time t, it271

will refuse to offload any content to a vault unless it verifies that, at time t, it is connecting272

to a valid enclave (this is a realistic assumption as verification is an easy task). Similarly, we273

assume a careful vault. That is, a vault inspects the program provided by an HS provider274

for malicious code, and will not run this program if it deems it malicious.275

7 VaulTor276

7.1 Architecture277

Building upon the conventional Tor hidden services architecture (Sec 2.2), VaulTor intro-278

duces three new entities: a device which we refer to as a vault, a TEE which will host an279

enclave and an optional external attestation service. The enclave is present inside the vault280

(see Figure 2) and utilizes its computational resources.281

In VaulTor, a willing device may offer to host content by advertising itself as a vault. This282

can be achieved without modifications to the current Tor architecture. The vault creates283

an onion address for itself (we shall refer to this onion website as the Vault Contact Hidden284

Service (VCHS)) to facilitate correspondence with potential HS providers. Vaults may ask285

for compensation for hosting an HS (further discussion on incentives is given in Sec 10.3).286

NINeS 2026



17:8 Dont get caught, keep your Onions in a Vault

Figure 2 Our proposed implementation. Red paths represent information flow through Tor circuits
with 6 nodes. The data inside the enclave is secure and information flow through the arrows is encrypted
i.e., the vault owner can not interpret it.

In this scenario, the vault has the same privacy guarantees that the Hidden Services have287

in the current Tor architecture.288

The HS provider can reach out to a vault through the vault’s VCHS and provide a basic289

program which we shall refer to a host program (HP) that 1) hosts a web server and 2)290

provides an interface through which (only) the HS provider can upload or remove content291

when they wish to update their website6. This program must be running inside an enclave292

to provide the privacy guarantees detailed in this architecture. Thus, the HS provider must293

verify that the enclave has been correctly set up (i.e., the program is running without any294

modifications to the code and within a TEE) before it provides all of the content it wishes295

to host and any incentives to the vault owner. Future content is also provided through the296

same update interface described earlier. This process is outlined in detail in Sec 7.2.2.297

The TEE guarantees security and privacy for any content the HS provider transfers into298

the vault. In addition, it removes the requirement for continuous up-time of the original299

HS provider as the enclave can continue servicing the clients. While the vault must remain300

online to serve web content, the HS provider does not have this obligation and is hence301

protected from various deanonymization attacks (Sec 8).302

Our architecture ensures increased anonymity and flexibility for the HS provider, minimal303

decrease in performance for a client (while maintaining the same security guarantees that304

Tor provides), and a level of anonymity for the vaults that is comparable to that of HSes in305

the current Tor architecture.306

7.2 Protocol307

7.2.1 Host Program (HP) Creation308

Before an HS provider contacts a vault, it must write a host program that is intended to309

run within the TEE. This program should provide the following key functionalities:310

6 The interface asks for a secret and after it is verified, the content can be uploaded or removed as desired.
Since the secret verification occurs within the script that is running within an enclave, the vault cannot
tamper with it without being noticed by the HS provider.



H. Ikram, R. Habib, M. Ali, Z. A. Uzmi 17:9

It should host a server7 bound to a port. This server should be able to handle POST311

and GET requests. Furthermore, the code should be able to handle requests dynamically.312

For example, it should be able to store files uploaded by a client in separate directories.313

The HP should, by default, provide an interface on the server to input an authentication314

secret. If the secret (which is known to the HS provider) passes the hardcoded verification315

in the HP, the HS provider should be allowed to modify the contents of the enclave316

directory. The authentication key can either be a password that is hashed and compared,317

or it could be the HS provider’s private key whose corresponding public key is written in318

the HP.319

Upon starting the server, the program should generate a quote file, that can be verified320

by the HS provider or a client (details given in Sec 7.2.2). This quote file is available in321

the web directory and can be accessed by the HS provider or the client for verification322

through remote attestation as described in Sec 2.1.323

The HP should provide some functionality to create backups of the hosted content in324

case the vault crashes. Backups are stored on the disk but encrypted using the enclave’s325

sealing key. This sealing key is deterministically generated by the CPU depending on326

the program running inside the TEE and the key burnt into the CPU. This key is only327

available to the enclave.328

Running an arbitrary application inside a TEE is not straightforward. However, a library329

OS (libOS), such as Gramine-SGX, facilitates this process with minimal modifications to the330

application. Furthermore, since the entire libOS is contained inside the TEE, no inspection331

of the application code is necessary. To this end, we assume that a libOS like Gramine-SGX332

is available to the vault.333

7.2.2 Bootstrapping334

The vault owner hosts and advertises the onion URL of its VCHS. The HS provider, vault335

owner and the HP (running inside a TEE) take the following steps to host their service in336

the vault (also shown in Figure 3):337

(i) The HS provider creates the HP (with the functionality described in Sec 7.2.1).338

(ii) The HS provider uploads the HP at the VCHS. It is important to note that the host339

program is uploaded in plaintext (either as a script or a binary).340

(iii) The vault owner runs the HP inside a TEE, hosts a hidden service (we shall refer to341

this as yourHS.onion), and binds it to the network port on which the host program will342

handle incoming requests.343

(iv) The host program will generate a public-private key pair (Psrv, Ssrv) for the hidden344

service it provides. Psrv is made available to anyone who connects to yourHS.onion while345

Ssrv only exists as a variable inside the enclave’s memory (and is sealed to the disk for346

persistent storage).347

(v) The host program generates a quote which represents Psrv
8 and the program. This quote348

is available to anyone accessing yourHS.onion.349

(vi) The HS provider accesses yourHS.onion, retrieves the quote, and verifies that the quote350

is legitimate9.351

7 Common servers such as Apache or Nginx can be used.
8 If the size of Psrv is too large to fit inside the REPORTDATA of the quote, a hash of Psrv may be used.

If Psrv is embedded in a certificate, then typically the certificate hash is used.
9 In Intel-SGX, this may involve sending this quote to Intel’s online attestation service. In RISCV

Keystone, the end user can verify the quote themselves.

NINeS 2026



17:10 Dont get caught, keep your Onions in a Vault

(vi)

HS

Provider

Attestation

 service

(vi-ix)

Client (x)

ENCLAVE

VAULT

(i)

(iii)

(iv,v) (xi)

(ii)

Figure 3 Our proposed implementation. Red paths represent 6-node circuits and green paths represent
3-node circuits.

(vii) The HS provider creates a secure connection with the enclave using Psrv and any form352

of key-exchange such as Diffie-Hellman. This public key (Psrv) may be embedded in a353

self-signed x509 certificate in order to facilitate https connections.354

(viii) The HS provider supplies the authentication secret over this secure connection, after355

which it can securely upload content (such as HTML, CSS, PHP, and JavaScript files).356

(ix) The enclave hosts the uploaded web application content.357

(x) Any client that connects to yourHS.onion can interact with the hosted web application.358

(xi) The enclave regularly encrypts and backs up these files into non-volatile storage using359

the sealing key.360

This procedure ensures increased anonymity for the HS provider. Their data is hosted361

in the vault and the vault owner can not access data inside the enclave or read the traffic362

in or out of the enclave. Figure 4 provides a flow diagram of this process detailing some363

decisions the HS provider must make while uploading to the vault.364

7.3 Enclave Isolation365

To ensure the protection of the vault, the enclave must have limited privileges. The following366

conditions, at minimum, are necessary:367

1. The enclave has access to a fixed, and limited, amount of RAM. One possible way to368

achieve this is by running the enclave within a virtual machine10 configured with limited369

memory. This prevents an enclave from occupying all available RAM, thus safeguarding370

the performance of other programs on the vault.371

2. The enclave can only use a fixed amount of persistent memory. This can be achieved372

by isolating the enclave in a separate disk partition. This prevents an enclave from373

completely filling up persistent disk space that should be available to other programs on374

the vault.375

3. The enclave can only use a fixed amount of network resources. This is possible by376

controlling the network traffic rate through Trickle [6].377

4. Any connections going out from the enclave must be restricted to only go via the Tor378

Proxy. This can be done by creating rules in iptables [4]. This is necessary to ensure379

10 The maximum ram must be set in Intel-SGX at enclave creation time.



H. Ikram, R. Habib, M. Ali, Z. A. Uzmi 17:11

Figure 4 The steps taken in order for an HS provider to trust and upload to a vault.

that the IP of the vault is not made available to the HS provider. Any traffic that is380

not going out through port 9050 (the default Tor Proxy port) is blocked by a firewall.381

Furthermore, any traffic going to the Host Program must originate from the Tor client382

11.383

7.4 Client connection384

A client must ensure that it is connected to the correct HS identified by its Psrv (embedded385

in an x509 certificate). To this end, the HS provider distributes not only the onion URL386

but also the hash of the x509 certificate when it wishes to advertise its service (similar to387

how conventional onion URLs are advertised). When connecting to an HS hosted on a vault,388

the client only needs to verify that the x509 certificate supplied by the service matches389

its advertised hash to ensure that it is connected to the appropriate entity. The client may390

maintain a list of valid certificate hashes12. Note that the client never has to perform remote391

attestation themselves.392

The client in VaulTor is exactly the same as a client in the conventional Tor architecture393

– they use the same connection protocol. Layered on top of this is the ability to match394

an x509 certificate (or its hash) with the one that is advertised by the HS provider. This395

matching can be done trivially with a browser extension to the Tor browser.396

8 Attack surfaces397

In this section, we specify the anonymity guarantees the VaulTor provides to each of the398

three entities: the client, the vault, and the HS provider. We consider the scenarios where399

11 This is to done to preserve vault anonymity from a malicious HS provider as discussed in 8.3.
12 Checking of certificate hash is trivial and may be added as a subroutine in the client’s Tor browser.

NINeS 2026



17:12 Dont get caught, keep your Onions in a Vault

each of these can be malicious as well as the scenario in which two of them collaborate400

to deanonymize the third. VaulTor enhances HS provider anonymity and leaves the client401

anonymity as it is. We further show that our new actor—the vault—is as protected as an402

HS provider in the current Tor Hidden Services architecture.403

8.1 HS provider Anonymity404

405

Scenario 1: Malicious client406

The HS provider no longer interacts with the clients directly. To access the web applica-407

tion content, the clients now establish a connection with the vault instead. Thus, unless the408

HS provider leaks identifying information in their content, they are safe from deanonymiza-409

tion at the hands of a client.410

Scenario 2: Malicious vault411

In the traditional Tor design, where the client and HS provider communicate over a two-412

way anonymous channel initiated by the client, the attack scenarios in Table 1 render the413

client a harder anonymity target by a malicious HS provider than an honest HS provider by414

a malicious client. A mirror situation exists in the VaulTor design where the HS provider415

uploads and updates the content on a vault over a two-way anonymous channel. Thus,416

even in the worst case, an HS provider in VaulTor is as anonymous as an HS provider in417

the traditional architecture. Furthermore, the minimal uptime requirement enhances the418

anonymity of the HS provider in VaulTor architecture. The use of TEE at the vault offers419

additional guarantees of data integrity and data confidentiality to the HS provider.420

Scenario 3: Vault and client collude421

The attack opportunities open to a client are a subset of the attack opportunities possible422

for a vault (since a vault has the same privileges as a client and more). Thus, the protection423

guaranteed for an HS provider from the vault applies in a scenario where the vault and client424

may collude.425

8.2 Client privacy426

We now show that a client is as protected in VaulTor as they are in the current Tor archi-427

tecture.428

Scenario 1: Malicious HS provider429

The HS provider is completely disconnected from the client, and hence is unable to430

launch attacks on the client directly.431

Scenario 2: Malicious vault432

A malicious vault may attempt to a) serve modified content or b) launch a deanonymiza-433

tion attack on the clients. We now show why these attacks are not feasible in our architecture:434

a) As the content is being hosted inside an enclave, clients can ensure that any content435

being served by the vault has not been maliciously modified. Since the x509 certificate436

is generated by the HP running inside a TEE and the corresponding private key (Ssrv)437

is only available to the TEE and the HS provider, a secure connection established using438

the certificate is guaranteed to be serving content vetted by the HS provider. Another439

consideration is that the content being hosted inside a vault is regularly encrypted and440

backed up to the disk. While this backed-up data can not be modified, a vault owner can441

selectively delete this backed-up data and restart the program in the enclave. This may442

result in the enclave accidentally serving outdated data to clients. However, if pieces of443



H. Ikram, R. Habib, M. Ali, Z. A. Uzmi 17:13

content are properly timestamped, the TEE can refuse to serve content that is outdated444

or add warnings while serving this content.445

b) In VaulTor, a client’s perspective of the Hidden Service architecture remains the same. A446

client still accesses content through a 6-node connection–except that instead of connecting447

to the HS provider, it connects to a vault. Thus the client enjoys the same privacy448

guarantees as a client in the conventional Tor architecture. Furthermore, as discussed in449

sec 10.8, the client may enjoy enhanced data privacy.450

Scenario 3: Vault and HS provider collude451

A colluding vault and HS provider in the VaulTor architecture have the same attack452

opportunities against a client as a malicious HS provider in the conventional Tor architecture.453

Thus, the deanonymization risk for the client is the same as when only the vault is malicious.454

8.3 Vault privacy455

VaulTor introduces a new entity in the Tor architecture: a vault that assumes a role similar456

to that of an HS in the current Tor design, thus maintaining a similar level of protection457

against deanonymization attacks.458

Scenario 1: Malicious client459

A vault is as vulnerable to a client as a Hidden Service is in the traditional Tor network.460

One may even argue that the vault has stronger anonymity guarantees due to the fact that461

the web application content is hosted within an enclave (a secret, protected environment462

the vault cannot modify). This may provide plausible deniability to the vault as it would463

be blind to the traffic that enters and leaves its enclave.464

Scenario 2: Malicious HS provider465

A vault is protected from attacks launched by an HS provider through the Host Program466

by ensuring that the safety criteria specified in Sec 7.3 are satisfied.467

Consider a malicious HS provider who uploads code that tries to obtain identifying468

information about the vault by leveraging the fact that the enclave is utilizing the vault’s469

hardware. For example, this code may try to read files belonging to the vault or the vault’s470

OS in order to directly find identifying information or it may try to obtain its IP indirectly by471

pinging an external server. The security guarantees provided by TEEs make direct attempts472

impossible; the host is also isolated from the TEE just as the TEE is isolated from the host.473

Furthermore, most applications for TEEs run in a VM (as is the default in gramine-SGX [1]),474

adding to the isolation. Indirect attacks are also mitigated using a firewall. By ensuring475

that all outgoing traffic is ported through port 9050 (the default port for Tor), only the IP476

of the exit node is available to the Host Program.477

Furthermore, by ensuring that all requests originate from the Tor client software on the478

vault, the vault is protected from pinging based attacks. If this is not done, a malicious HS479

provider may upload a simple Host Program that replies with a unique phrase to the HS480

provider’s IP when this Host Program is pinged. The HS provider may then ping various481

candidate IPs in the hopes of stumbling upon the vault’s IP which would reply with the482

phrase. This sort of attack is only possible if the Host Program can be pinged directly, from483

outside the Tor client software.484

Scenario 3: Client and HS Provider collude485

The HS provider is in a unique position as it directly provides code that the vault runs486

within an enclave. If an entity controls both the HS provider and a client node, we consider487

an attempt to launch a watermarking attack (described in Sec 9.1). This attack, in particular,488

only requires the control of two entities connected to the third. Moreover, the fact that the489

NINeS 2026



17:14 Dont get caught, keep your Onions in a Vault

HS provider and client can make repeated on-demand requests to the vault further benefits490

the viability of this attack.491

To attempt to launch a watermarking attack (similar to what [38, 39] describe), the HS492

provider would add some watermark to the Tor traffic that can be identified at the client493

end. Despite controlling both the HS provider and a client, an attacker would not have494

the ability to successfully launch a watermarking attack on the vault. This is because of a495

missing component that this attack requires: the control of a guard relay. If we also assume496

the control of a guard relay, the HS provider is no longer necessary, as the guard relay can497

be the entity that watermarks the traffic. A guard relay and client could potentially launch498

this attack on their own without the requirement of an HS provider. Hence, the vault is as499

protected from a watermarking attack as an HS is in the current architecture. Scenario 3 is500

thus akin to having two malicious clients in the conventional Tor architecture.501

9 Evaluation502

In this section, we will qualitatively evaluate the effect of VaulTor in deflecting various503

families of existing attacks on HSes from the HS provider to our new Vault node. Afterwards,504

we will quantitatively measure the performance impact of VaulTor on client side network505

performance.506

9.1 Known Attacks Deflected507

We will list various attacks and briefly explain how the VaulTor architecture deflects them508

from the HS provider to the vault. This list is non-exhaustive yet exemplifies the prominent509

attacks in recent years.510

Clock Skew: These attacks rely on repeatedly sending requests to an HS in order to511

heat up its CPU which has some tangible effect on the timestamp of incoming packets [60, 52].512

In VaulTor, this is impossible. No one can repeatedly send packets to the HS provider.513

Congestion: This attack relies on an adversary congesting existing guard nodes in the514

network [42], forcing the HS to connect to their compromised guard node long enough for515

the adversary to correlate traffic. This attack is completely deflected in VaulTor; the HS516

provider is sporadically online for limited periods and an adversary would have to congest517

the network indefinitely.518

Fingerprinting: These attacks rely on learning the traffic patterns of an HS and ref-519

erencing this against the traffic of a candidate set of guard nodes [46, 57, 53, 36]. In our520

architecture, the vault is serving the traffic while the HS provider is taciturn. Thus, this521

type of attack will not work on the HS provider. Similar attacks that rely on compromised522

middle nodes [41] are similarly deflected.523

Guard Node Discovery: The Tor developers currently consider this the most potent524

threat against hidden services [7]. This attack relies on making multiple connections with525

the HS provider such that their malicious middle node is next to the HS provider’s guard526

node. Repeated, on-demand connections with the HS provider are impossible in VaulTor.527

As such, this attack is eliminated.528

Location Leaks: Such attacks rely on the negligence of the HS provider and are out of529

the scope of this paper [49].530

Watermarking: In this type of attack, an adversary watermarks traffic on the client531

side in order to detect it at the malicious guard node of the HS provider [38, 39]. If a532

malicious vault node tries to launch this attack on the HS provider, this attack would be533



H. Ikram, R. Habib, M. Ali, Z. A. Uzmi 17:15

rendered less effective because HS-provider would have minimal uptime connection with the534

vault code instead of a constant connection.535

Table 1 shows the various scenarios in which an adversary can launch a deanonymizing536

attack on Tor Hidden Services along with the impact of VaulTor on these attacks.537

Scenario Attack Categories VaulTor impact
Adversary can send
arbitrary requests
to the HS provider

Clock Skew, Watermarking,
Guard Node Discovery,
Fingerprinting

Scenario
eliminated

HS Provider has
high uptime

Clock Skew, Watermarking,
Congestion, Fingerprinting

Scenario
diminished

High volume of
traffic coming from
the HS provider

Watermarking, Congestion,
Fingerprinting

Scenario
diminished

Table 1 Various scenarios that lead to categories of contemporary attacks on Tor Hidden Services
along with the impact of VaulTor on these scenarios.

9.2 Performance538

It is important that the security improvements VaulTor brings do not significantly degrade539

client side network performance. Important client side performance metrics include the540

network latency and the throughput. In this section, we detail our experimental setup541

(which includes our implementation of a vault) and our evaluation of these metrics. Our542

experiments measure the time experienced by the client to retrieve the data from an HS; the543

registration and bootstrapping processes in VaulTor occur only once and have a negligible13
544

performance impact in the overall lifetime of the HS.545

9.2.1 Experimental setup546

To measure and compare the network performance of Hidden Services when hosted within547

and outside a TEE, we ran two instances of a Host Program on the same machine. One of548

these HPs ran inside a TEE (facilitated by the gramine-SGX library OS [1]) while the other549

HP (which we shall refer to as a vanilla HP) ran outside a TEE. A Tor client14 was also550

launched on the same machine which generated two onion URLs: one for the enclave and551

one for the vanilla HP. The Tor client directs traffic for each of these onion URLs to their552

respective HPs, allowing them to serve content via Tor.553

Both the enclave and the vanilla HP ran webservers and, in order to ensure consistency,554

served the same landing webpage simultaneously. In addition, the HP running inside a TEE555

had the ability to generate a quote in order to facilitate remote attestation. Both web servers556

were written in Python3 and regularly backed up data to persistent memory. Moreover, these557

webpages were hosted on the same device with an SGX-enabled Intel processor (Core-i5558

10210U).559

We conducted these experiments with three webpages, each with varying page sizes560

(0.5kB, 50kB, and 5000kB). The content on these webpages included HTML and JavaScript.561

13 This performance impact will only be negligible if uploading content does not significantly increase the
uptime of HS provider.

14 This client is not the same as a client in Tor architecture which we have discussed above. This is a
program necessary to interact with the Tor network.

NINeS 2026



17:16 Dont get caught, keep your Onions in a Vault

We measured the performance using three methods:562

1. Random Relays: We restarted the Tor application between each measurement to establish563

fresh circuits. This gave us three random relays for every measurement.564

2. Fixed Relays: We used fixed/constant relays15 across webpages for both VaulTor and565

Tor. We report the average performance of three different fixed circuits.566

3. Local: We locally accessed the webpages.567

Each webpage was loaded 250 times in each of the methods, save for the Fixed Relays method,568

for which we loaded each webpage 250 times on each circuit (a total of 750 measurements)569

and took the average of the results. Methods (1) and (2) were conducted on the actual Tor570

network.571

We thus quantified any overall changes in performance caused specifically by hosting an572

HS within a TEE.573

9.2.2 Results574

0.5 50 5000
Webpage size (kB)

0

50

100

150

Ti
m

e 
(s

)

Tor VaulTor

(a) Random Relays, TTFB

0.5 50 5000
Webpage size (kB)

0

10

20

30

Ti
m

e 
(s

)

Tor VaulTor

(b) Fixed Relays, TTFB

0.5 50 5000
Webpage size (kB)

0.00

0.01

0.02

0.03

Ti
m

e 
(s

)

Non-TEE TEE

(c) Local, TTFB

0.5 50 5000
Webpage size (kB)

0

50

100

150

Ti
m

e 
(s

)

Tor VaulTor

(d) Random Relays, TTLB

0.5 50 5000
Webpage size (kB)

0

10

20

30

Ti
m

e 
(s

)

Tor VaulTor

(e) Fixed Relays, TTLB

0.5 50 5000
Webpage size (kB)

0.00

0.01

0.02

0.03
Ti

m
e 

(s
)

Non-TEE TEE

(f) Local, TTLB

Figure 5 Time to first byte (TTFB) and time to last byte (TTLB) for webpages with varying page
sizes without and within a TEE. Error bars represent 99% confidence intervals.

Figure 5 shows the time to first byte (TTFB) and time to last byte (TTLB) for the 3575

webpages hosted in the 2 architectures (the current architecture and VaulTor).576

We note a minimal difference in performance across webpages and testbeds. Note that,577

for most of the results collected over Tor, the average TTFB and TTLB in the VaulTor578

architecture fall within the 99% confidence interval of those of the current architecture. The579

only result (collected over the Tor network) that lied outside the confidence interval was for580

the TTLB of a 5000kB webpage routed through fixed relays. This had an average increase581

of 2.9%.582

If we consider all the results, including those that lie within the confidence intervals, we583

note a maximum increase in TTFB and TTLB of 5.7% (5000kB, Random Relays) and 2.9%584

(5000kB, Fixed Relays), respectively.585

It should be noted that running an arbitrary program inside an Intel-SGX TEE may have586

a non-negligible computation overhead. When accessing the webpages locally (and hence,587

not over the Tor network), we note a maximum percentage increase in time in the case of588

the TTFB of a webpage of size 50kB (15.9%). However, this delay is negligible compared589

to delays caused by Tor’s network latency. As such, it is not surprising that the percentage590

15 These were chosen randomly from advertised Tor relays here: https://www.dan.me.uk/tornodes

https://www.dan.me.uk/tornodes


H. Ikram, R. Habib, M. Ali, Z. A. Uzmi 17:17

performance overhead of VaulTor over the conventional Tor architecture is minimal when591

measured over the real Tor network.592

We believe this nominal decrease in performance is justified considering the major an-593

onymity benefits VaulTor brings to the HS provider.594

9.2.3 Ethics595

We had ethical considerations while conducting our performance measurements. We solely596

collected timing information and the size of the files we downloaded. We did not store the597

IP addresses of the entry and exit nodes, so as to preserve their anonymity. In addition,598

our load on the Tor network was negligible. We ensured this by conducting the experiments599

serially, and not in parallel, to minimize the load at any given time. To the best of our600

knowledge, we did not hinder any other users’ experiences on the Tor network.601

10 Discussion602

10.1 Additional Anonymity Measures603

There exist a number of proposals (such as [7, 20, 55, 62]) that enhance the anonymity of604

the HS provider. These solutions, however, result in degraded network performance (longer605

delays and lower throughput) for the client, when used in the conventional HS architecture.606

This reduction in network performance renders these solutions less attractive today. With607

the VaulTor architecture, the vault serves the content to the clients, and any retrofitting at608

the HS provider side has no bearing on the network performance experienced by the client.609

For example, the Vanguard add-on [7] (which inserts additional hops in the connection)610

may be used by the HS provider without affecting client-side performance. Similarly, privacy-611

preserving path selection methods [20, 55, 62] may incur latency costs but are a non-issue612

for an HS provider that connects with the vault infrequently.613

Furthermore, techniques like temporary proxies are completely compatible with our sys-614

tem and may be used by clients and the HS provider to connect to vaults to obfuscate their615

traffic [25, 35, 19].616

10.2 HS Provider Flexibility617

In the current Tor architecture, the HS provider must remain static in order to serve content.618

The flexibility offered by VaulTor can be leveraged by the HS provider to communicate from619

secure and variable locations. This would especially be beneficial in the context of activists or620

journalists who want to report their content from secure intermediate locations in oppressive621

regimes without the risk of getting caught. Moreover, VaulTor would allow the HS provider’s622

content to remain accessible during Internet outages, which is commonplace in regions with623

political instability and censorship [21, 22].624

10.3 Incentives for Vault Node625

10.3.1 Monetary Incentives626

The vault owner proxies for the HS provider and, on its behalf, serves content to the clients.627

This act must be incentivized for the vault owner. These incentives may be social incentives628

– similar to how users of Tor run relays and nodes.629

NINeS 2026



17:18 Dont get caught, keep your Onions in a Vault

However, if incentives are monetary, they must be exchanged in a secure and private630

manner. Towards this end, a blockchain may be used to ensure that the vault owner receives631

cryptocurrency rewards for hosting content for the HS provider. One approach to this is632

that the vault owner supplies the HS provider with their address on a public blockchain such633

as Ethereum [67]. Only if regular cryptocurrency payments are made to this public address634

does the vault owner continue hosting. This allows both the HS provider and the clients to635

“crowdsource” an HS on a vault.636

This previous approach does necessitate timely payments from the HS provider. This637

requirement can be removed via the use of smart contracts. A smart contract can lock638

the cryptocurrency that it receives from the HS provider and clients. The smart contract639

can then use an oracle to verify that the HS is being hosted properly and perform remote640

attestation. If the HS is being hosted properly and the remote attestation is successful,641

the smart contract releases the cryptocurrency to the vault’s blockchain address. In order642

to preserve privacy, zero knowledge enabled cryptocurrency such as Zcash [23] can be used.643

Furthermore, a Decentralized Exchange (DEX) may be used to trade cryptocurrency. These644

measures reduce the possibility of profiling based attacks.645

For example, a vault owner may make their zero-knowledge blockchain address (such646

as for monero [56]) available on VCHS and the HS provider may anonymously transfer this647

cryptocurrency by publishing their transaction by connecting to an external blockchain node648

through the Tor proxy. In a zero-knowledge blockchain, the transaction itself will have no649

identifying information present in it that may be used for social engineering (such as, by650

using chain analysis tools).651

10.3.2 Altruistic Reasons652

Vault operation may also be motivated by altruistic considerations rather than direct fin-653

ancial compensation. This model closely mirrors the operation of Tor relays, where parti-654

cipants voluntarily contribute resources to enhance privacy, censorship resistance, and overall655

network resilience without receiving monetary rewards. While operating a Tor relay may656

incidentally support unlawful activities, it also enables many socially beneficial uses, such657

as protecting free expression and providing access to information under restrictive condi-658

tions. Similarly, vault nodes may be used for both benign and potentially abusive purposes;659

however, their primary value lies in supporting privacy preserving and censorship resistant660

services.661

Similar altruistic participation models exist in other systems, including running VPN662

or proxy servers for community use, and operating public Network Time Protocol (NTP)663

servers. In these cases, operators are motivated by a desire to support open infrastructure,664

enhance collective security, or contribute to public-good Internet services.665

10.4 Plausible Deniability for Vault666

In the VaulTor architecture, a vault owner is not privy to the content present inside the TEE.667

We believe that this adds an extra layer of plausible deniability, greater than the plausible668

deniability of conventional data hosting services that are aware of the content being served.669

When hosting content on behalf of an HS provider, the only thing the vault owner knows670

is the Onion URL of the Hidden Service. This has a parallel with Guard Nodes in the671

conventional Tor architecture that know what Onion URL’s traffic is routed through them.672

Both the vault and the guard node can not read this traffic or compromise its integrity, only673

help move this content. The only difference is that the physical storage resources of the674



H. Ikram, R. Habib, M. Ali, Z. A. Uzmi 17:19

Vault owner are being used. However, even this physical storage is encrypted and opaque to675

the Vault owner which is not privy to the information being served, just like a guard node.676

In our future work, we can enable vault owners to run a Tor client inside an enclave and677

run the HP inside another enclave on the same machine. The Tor client generates a new678

onion URL and shares it (only) with the Host Program. The HP then serves content on679

this onion URL using the Tor client as a proxy. The HP also forwards the onion URL to680

the HS provider who can then advertise it as before. In this scenario, the client does not681

need to modify their browser. As such, the vault owner is not aware of the content they are682

serving. In this scenario, they can not be held liable for the content they are serving as the683

information about which machine is serving what content is available to “no one”. And “no684

one” includes the vault owner and the HS provider.685

10.5 Legal and deployability considerations686

VaulTor is a technical design that aims to improve the anonymity and availability of hidden687

services. While it does not change Tors underlying trust or threat model, legal and regulatory688

constraints may nonetheless become a practical barrier to deployment. For example, a vault689

operator could face legal risk for hosting third-party content that is alleged to be unlawful690

(e.g., infringing or prohibited content), even if the operator cannot readily inspect the hosted691

state. In addition, hidden service operators remain responsible for the services and content692

they publish, regardless of whether hosting is delegated to a TEE-hosted vault node.693

For vault operators, legal exposure is jurisdiction-dependent and may hinge on how local694

law treats third-party hosting, infrastructure provision, and duties arising from notice or695

investigation. Thus, even though VaulTor is designed so that the vault cannot inspect the696

encrypted hidden service content state, prospective vault operators should treat legal risk697

as non-negligible and evaluate deployability under applicable local law (e.g., jurisdictional698

choice, operational policies, and whether participation is restricted to vetted deployments).699

10.6 Incremental deployment:700

The VaulTor architecture supports incremental deployment (albeit its strength is fully util-701

ized when there are many vaults present on Tor). Vaults can register their VCHS themselves702

to an HSDir similar to how Hidden Services are currently already registered. This allows703

for a slow, optional adoption of VaulTor.704

The client does need to install a small extension (as discussed in Sec 7.4) that compares705

Psrv (or its hash) with the one advertised by the HS provider but this is a trivial add-on706

and does not affect traditional HSes.707

10.7 Multiple Vaults:708

An HS provider may commission multiple vaults to hold their data. To this end, they may709

download the Ssrv and the x509 certificate from the HP of one vault and upload it to an HP710

they have hosted on another vault. As clients use the certificate hash provided by an HS to711

validate its identity (as described in Sec 7.4), they can be certain they are being served by712

the same HS provider even if the onion URL of the HS is different. This will add redundancy713

and fault tolerance to the HS provider’s content: if one vault becomes inactive, the other714

vaults can continue to serve content.715

NINeS 2026



17:20 Dont get caught, keep your Onions in a Vault

10.8 Strengthening client data privacy716

In the VaulTor architecture, the host program is present inside a TEE and its measurement717

(see Sec 2.1) is available to the client (in addition to the HS provider). The HS provider718

may elect to make the code itself available to the client, allowing the client to inspect this719

code. If the code is simple (for example, the code only stores and serves content to password720

authenticated requests), then the client can upload private data to the server without having721

to trust the HS provider as is necessary in the current Tor architecture.722

10.9 Attacks against TEEs:723

A wide variety of side-channel attacks exist that can target TEEs [68, 64, 61, 27, 54]. These724

attacks aim to discern secrets contained inside the TEE, such as private keys, through725

various means such as leveraging page faults. Vendors are prompt in mitigating side-channel726

attacks [10] as the community uncovers those. Considering the research and development727

that focuses on mitigating side-channel attacks [66, 43, 47, 37], architectural designs discount728

such attacks from their threat models [63, 11, 50]. We also follow take the same course of729

action (Sec 6).730

10.10 Advancements/variations in TEE technology:731

Although our current implementation utilizes Intel-SGX, VaulTor is a generic solution that732

could theoretically support any TEE service. As newer TEE services (such as Intel-TDX [3])733

emerge and improve, the strength and flexibility of VaulTor improve as well. In the future,734

a diverse set of vaults utilizing differing TEE technologies could be built and tested. Other735

promising implementations of TEEs are also being proposed [18, 26, 29, 34, 48]. We believe736

that TEEs will become increasingly resistant to side-channel attacks.737

11 Conclusion738

We present VaulTor as an architectural solution that leverages TEE technology to reduce739

the threat of deanonymization attacks against HS providers on the Tor network. To this end,740

VaulTor introduces a new actor: the vault, which serves content on the HS provider’s behalf.741

We show that VaulTor prevents several HS deanonymization attacks by utilizing the vault,742

whilst preserving the same level of client anonymity as in the current architecture. This743

is achieved without any noticeable performance degradation experienced by the client. We744

also argue that vaults have the same security guarantees as HS providers in the conventional745

Tor architecture.746



H. Ikram, R. Habib, M. Ali, Z. A. Uzmi 17:21

References747

1 Gramine,https://gramineproject.io/.748

2 How Do Onion Services Work?, https://community.torproject.org/onion-services/749

overview/.750

3 Intelő Trust Domain Extensions (Intelő TDX), https://www.intel.com/content/www/us/en/751

developer/articles/technical/intel-trust-domain-extensions.html.752

4 iptables(8) - Linux man page, https://linux.die.net/man/8/iptables.753

5 Tor, https://www.torproject.org/.754

6 trickle(1) - Linux man page, https://linux.die.net/man/1/trickle. 2002.755

7 Announcing the Vanguards Add-On for Onion Services, https://blog.torproject.org/756

announcing-vanguards-add-onion-services/. 2014.757

8 Global action against dark markets on Tor network, https://www.europol.europa.eu/758

newsroom/news/global-action-against-dark-markets-tor-network. 2014.759

9 Users - Tor Metrics, https://metrics.torproject.org/userstats-relay-country.html. 2022.760

10 2023.761

11 Adil Ahmad, Juhee Kim, Jaebaek Seo, Insik Shin, Pedro Fonseca, and Byoungyoung Lee.762

Chancel: Efficient multi-client isolation under adversarial programs. 01 2021.763

12 Masoud Akhoondi, Curtis Yu, and Harsha V. Madhyastha. Lastor: A low-latency as-aware764

tor client. IEEE/ACM Trans. Netw., 22(6):17421755, dec 2014.765

13 Mashael AlSabah, Kevin Bauer, Tariq Elahi, and Ian Goldberg. The path less travelled:766

Overcoming tor’s bottlenecks with traffic splitting. In Emiliano De Cristofaro and Matthew767

Wright, editors, Privacy Enhancing Technologies, pages 143–163, Berlin, Heidelberg, 2013.768

Springer Berlin Heidelberg.769

14 Greubel Andre, Dmitrienko Alexandra, and Kounev Samuel. Smartor: Smarter tor with smart770

contracts: Improving resilience of topology distribution in the tor network. In Proceedings of771

the 34th Annual Computer Security Applications Conference, ACSAC ’18, page 677691, New772

York, NY, USA, 2018. Association for Computing Machinery.773

15 Robert Annessi and Martin Schmiedecker. Navigator: Finding faster paths to anonymity. In774

2016 IEEE European Symposium on Security and Privacy (EuroS&P), pages 214–226, 2016.775

16 ARM Limited. Security technology: building a secure system using trustzone776

technology http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/777

PRD29-GENC-009492C_trustzone_security_whitepaper.pdf. 2018.778

17 Arushi Arora and Christina Garman. Improving the performance and security of tor’s onion779

services. Proceedings on Privacy Enhancing Technologies, 2025:531–552, 01 2025.780

18 Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig, Matthias Klimmek,781

Ahmad-Reza Sadeghi, and Emmanuel Stapf. CURE: A security architecture with CUstom-782

izable and resilient enclaves. In 30th USENIX Security Symposium (USENIX Security 21),783

pages 1073–1090. USENIX Association, August 2021.784

19 Diogo Barradas, Nuno Santos, Luís Rodrigues, and Vítor Nunes. Poking a hole in the wall:785

Efficient censorship-resistant internet communications by parasitizing on webrtc. In Proceed-786

ings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, CCS787

’20, page 3548, New York, NY, USA, 2020. Association for Computing Machinery.788

20 Armon Barton and Matthew Wright. Denasa: Destination-naive as-awareness in anonymous789

communications. Proceedings on Privacy Enhancing Technologies, 2016(4):356–372, 2016.790

21 David Belson. A recent spate of Internet disruptions, https://blog.cloudflare.com/791

a-recent-spate-of-internet-disruptions-july-2024/. 2024.792

22 David Belson. Q2 2024 Internet disruption summary, https://blog.cloudflare.com/793

q2-2024-internet-disruption-summary/. 2024.794

23 Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran795

Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin.796

Cryptology ePrint Archive, Paper 2014/349, 2014. https://eprint.iacr.org/2014/349.797

NINeS 2026

https://gramineproject.io/
https://community.torproject.org/onion-services/overview/
https://community.torproject.org/onion-services/overview/
https://community.torproject.org/onion-services/overview/
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://linux.die.net/man/8/iptables
https://www.torproject.org/
https://linux.die.net/man/1/trickle
https://blog.torproject.org/announcing-vanguards-add-onion-services/
https://blog.torproject.org/announcing-vanguards-add-onion-services/
https://blog.torproject.org/announcing-vanguards-add-onion-services/
https://www.europol.europa.eu/newsroom/news/global-action-against-dark-markets-tor-network
https://www.europol.europa.eu/newsroom/news/global-action-against-dark-markets-tor-network
https://www.europol.europa.eu/newsroom/news/global-action-against-dark-markets-tor-network
 https://metrics.torproject.org/userstats-relay-country.html 
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://blog.cloudflare.com/a-recent-spate-of-internet-disruptions-july-2024/
https://blog.cloudflare.com/a-recent-spate-of-internet-disruptions-july-2024/
https://blog.cloudflare.com/a-recent-spate-of-internet-disruptions-july-2024/
https://blog.cloudflare.com/q2-2024-internet-disruption-summary/
https://blog.cloudflare.com/q2-2024-internet-disruption-summary/
https://blog.cloudflare.com/q2-2024-internet-disruption-summary/
https://eprint.iacr.org/2014/349


17:22 Dont get caught, keep your Onions in a Vault

24 Alex Biryukov, Ivan Pustogarov, and Ralf-Philipp Weinmann. Trawling for tor hidden ser-798

vices: Detection, measurement, deanonymization. In 2013 IEEE Symposium on Security and799

Privacy, pages 80–94, 2013.800

25 Cecylia Bocovich, Arlo Breault, David Fifield, Serene, and Xiaokang Wang. Snowflake, a801

censorship circumvention system using temporary WebRTC proxies. In 33rd USENIX Se-802

curity Symposium (USENIX Security 24), pages 2635–2652, Philadelphia, PA, August 2024.803

USENIX Association.804

26 Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi, and Emmanuel Stapf.805

Sanctuary: Arming trustzone with user-space enclaves. 01 2019.806

27 Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul Strackx. Telling807

your secrets without page faults: Stealthy page Table-Based attacks on enclaved execution.808

In 26th USENIX Security Symposium (USENIX Security 17), pages 1041–1056, Vancouver,809

BC, August 2017. USENIX Association.810

28 Nicolas Christin. Traveling the silk road: a measurement analysis of a large anonymous online811

marketplace. Proceedings of the 22nd international conference on World Wide Web, 2013.812

29 Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal hardware extensions813

for strong software isolation. In Proceedings of the 25th USENIX Conference on Security814

Symposium, SEC’16, page 857874, USA, 2016. USENIX Association.815

30 Hussein Darir, Hussein Sibai, Chin-Yu Cheng, Nikita Borisov, Geir Dullerud, and Sayan816

Mitra. Mleflow: Learning from history to improve load balancing in tor. Proceedings on817

Privacy Enhancing Technologies, 2022:75–104, 01 2022.818

31 Tom Woller David Kaplan, Jeremy Powell. AMD memory encryption, https://developer.amd.819

com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf. 2016.820

32 Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The Second-Generation onion821

router. In 13th USENIX Security Symposium (USENIX Security 04), San Diego, CA, August822

2004. USENIX Association.823

33 Joan Feigenbaum, Aaron Johnson, and Paul Syverson. Preventing active timing attacks in824

low-latency anonymous communication. pages 166–183, 07 2010.825

34 Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan Parno. Komodo: Using826

verification to disentangle secure-enclave hardware from software. In Proceedings of the 26th827

Symposium on Operating Systems Principles, SOSP ’17, page 287305, New York, NY, USA,828

2017. Association for Computing Machinery.829

35 Gabriel Figueira, Diogo Barradas, and Nuno Santos. Stegozoa: Enhancing webrtc covert830

channels with video steganography for internet censorship circumvention. In Proceedings of831

the 2022 ACM on Asia Conference on Computer and Communications Security, ASIA CCS832

’22, page 11541167, New York, NY, USA, 2022. Association for Computing Machinery.833

36 Jamie Hayes and George Danezis. k-fingerprinting: A robust scalable website fingerprinting834

technique. In 25th USENIX Security Symposium (USENIX Security 16), pages 1187–1203,835

Austin, TX, August 2016. USENIX Association.836

37 Zhou Hongwei, Ke Zhipeng, Zhang Yuchen, Wu Dangyang, and Yuan Jinhui. Tsgx: De-837

feating sgx side channel attack with support of tpm. In 2021 Asia-Pacific Conference on838

Communications Technology and Computer Science (ACCTCS), pages 192–196, 2021.839

38 Alfonso Iacovazzi, Daniel Frassinelli, and Yuval Elovici. The DUSTER attack: Tor onion840

service attribution based on flow watermarking with track hiding. In 22nd International841

Symposium on Research in Attacks, Intrusions and Defenses (RAID 2019), pages 213–225,842

Chaoyang District, Beijing, September 2019. USENIX Association.843

39 Alfonso Iacovazzi, Sanat Sarda, and Yuval Elovici. Inflow: Inverse network flow watermarking844

for detecting hidden servers. In IEEE INFOCOM 2018 - IEEE Conference on Computer845

Communications, pages 747–755, 2018.846

40 Intel. Intel software guard extensions programming reference, https://software.intel.com/847

sites/default/files/managed/48/88/329298-002.pdf/. 2014.848

https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf/
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf/
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf/


H. Ikram, R. Habib, M. Ali, Z. A. Uzmi 17:23

41 Rob Jansen, Marc Juarez, Rafael Galvez, Tariq Elahi, and Claudia Diaz. Inside job: Applying849

traffic analysis to measure tor from within. 01 2018.850

42 Rob Jansen, Florian Tschorsch, Aaron Johnson, and Björn Scheuermann. The sniper attack:851

Anonymously deanonymizing and disabling the tor network. In NDSS, 2014.852

43 Yuan Jinhui, Zhou Hongwei, and Zhang Laishun. F-sgx: Next generation sgx for trusted853

computing. In 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and854

Computers (IPEC), pages 673–677, 2021.855

44 Aaron Johnson, Rob Jansen, Nicholas Hopper, Aaron Segal, and Paul Syverson. Peerflow:856

Secure load balancing in tor. Proceedings on Privacy Enhancing Technologies, 2017, 04 2017.857

45 Seongmin Kim, Juhyeng Han, Jaehyeong Ha, Taesoo Kim, and Dongsu Han. Sgx-tor: A858

secure and practical tor anonymity network with sgx enclaves. IEEE/ACM Transactions on859

Networking, 26(5):2174–2187, 2018.860

46 Albert Kwon, Mashael AlSabah, David Lazar, Marc Dacier, and Srinivas Devadas. Circuit861

fingerprinting attacks: Passive deanonymization of tor hidden services. In 24th USENIX862

Security Symposium (USENIX Security 15), pages 287–302, Washington, D.C., August 2015.863

USENIX Association.864

47 Fan Lang, Wei Wang, Lingjia Meng, Jingqiang Lin, Qiongxiao Wang, and Linli Lu. Mole:865

Mitigation of side-channel attacks against sgx via dynamic data location escape. In Pro-866

ceedings of the 38th Annual Computer Security Applications Conference, ACSAC ’22, page867

978988, New York, NY, USA, 2022. Association for Computing Machinery.868

48 Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn Song. Keystone:869

An open framework for architecting trusted execution environments. In Proceedings of the870

Fifteenth European Conference on Computer Systems, EuroSys ’20, New York, NY, USA,871

2020. Association for Computing Machinery.872

49 Srdjan Matic, Platon Kotzias, and Juan Caballero. Caronte: Detecting location leaks for873

deanonymizing tor hidden services. In Proceedings of the 22nd ACM SIGSAC Conference874

on Computer and Communications Security, CCS ’15, page 14551466, New York, NY, USA,875

2015. Association for Computing Machinery.876

50 J. Menetrey, M. Pasin, P. Felber, and V. Schiavoni. Twine: An embedded trusted runtime877

for webassembly. In 2021 IEEE 37th International Conference on Data Engineering (ICDE),878

pages 205–216, Los Alamitos, CA, USA, apr 2021. IEEE Computer Society.879

51 Prateek Mittal and Nikita Borisov. Shadowwalker: Peer-to-peer anonymous communica-880

tion using redundant structured topologies. In Proceedings of the 16th ACM Conference on881

Computer and Communications Security, CCS ’09, page 161172, New York, NY, USA, 2009.882

Association for Computing Machinery.883

52 Steven Murdoch. Hot or not: Revealing hidden services by their clock skew. pages 27–36, 01884

2006.885

53 Milad Nasr, Alireza Bahramali, and Amir Houmansadr. Deepcorr: Strong flow correlation886

attacks on tor using deep learning. In Proceedings of the 2018 ACM SIGSAC Conference887

on Computer and Communications Security, CCS ’18, page 19621976, New York, NY, USA,888

2018. Association for Computing Machinery.889

54 Alexander Nilsson, Pegah Nikbakht Bideh, and Joakim Brorsson. A survey of published890

attacks on intel sgx, 2020.891

55 Rishab Nithyanand, Oleksii Starov, Phillipa Gill, Adva Zair, and Michael Schapira. Measuring892

and mitigating as-level adversaries against tor. ArXiv, abs/1505.05173, 2016.893

56 Shen Noether. Ring signature confidential transactions for monero. IACR Cryptology ePrint894

Archive, 2015:1098, 2015.895

57 Andriy Panchenko, Asya Mitseva, Martin Henze, Fabian Lanze, Klaus Wehrle, and Thomas896

Engel. Analysis of fingerprinting techniques for tor hidden services. In Proceedings of the897

2017 on Workshop on Privacy in the Electronic Society, WPES ’17, page 165175, New York,898

NY, USA, 2017. Association for Computing Machinery.899

NINeS 2026



17:24 Dont get caught, keep your Onions in a Vault

58 phobos. Using Tor hidden services for good, https://blog.torproject.org/900

using-tor-hidden-services-good/. 2012.901

59 Florentin Rochet, Ryan Wails, Aaron Johnson, Prateek Mittal, and Olivier Pereira. CLAPS:902

Client-Location-Aware Path Selection in Tor, page 1734. Association for Computing Ma-903

chinery, New York, NY, USA, 2020.904

60 Komang Oka Saputra, Wei-Chung Teng, and Yi-Hao Chu. A clock skew replication attack905

detection approach utilizing the resolution of system time. In 2015 IEEE/WIC/ACM Interna-906

tional Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), volume 3,907

pages 211–214, 2015.908

61 Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena. Preventing909

page faults from telling your secrets. In Proceedings of the 11th ACM on Asia Conference on910

Computer and Communications Security, ASIA CCS ’16, page 317328, New York, NY, USA,911

2016. Association for Computing Machinery.912

62 Yixin Sun, Anne Edmundson, Nick Feamster, Mung Chiang, and Prateek Mittal. Counter-913

raptor: Safeguarding tor against active routing attacks. In 2017 IEEE Symposium on Security914

and Privacy (SP), pages 977–992, 2017.915

63 Yuanyuan Sun, Sheng Wang, Huorong Li, and Feifei Li. Building enclave-native storage916

engines for practical encrypted databases. Proc. VLDB Endow., 14(6):10191032, feb 2021.917

64 Jo Van Bulck, Frank Piessens, and Raoul Strackx. Sgx-step: A practical attack framework918

for precise enclave execution control. In Proceedings of the 2nd Workshop on System Software919

for Trusted Execution, SysTEX’17, New York, NY, USA, 2017. Association for Computing920

Machinery.921

65 Tao Wang, Kevin Bauer, Clara Forero, and Ian Goldberg. Congestion-aware path selection922

for tor. In Angelos D. Keromytis, editor, Financial Cryptography and Data Security, pages923

98–113, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.924

66 Jan Wichelmann, Anna Pätschke, Luca Wilke, and Thomas Eisenbarth. Cipherfix: Mitigating925

ciphertext side-channel attacks in software, 2023.926

67 Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum927

project yellow paper, 151(2014):1–32, 2014.928

68 Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks: Deterministic929

side channels for untrusted operating systems. In 2015 IEEE Symposium on Security and930

Privacy, pages 640–656, 2015.931

https://blog.torproject.org/using-tor-hidden-services-good/
https://blog.torproject.org/using-tor-hidden-services-good/
https://blog.torproject.org/using-tor-hidden-services-good/

	1 Introduction
	2 Background
	2.1 Trusted Execution Environments (TEEs)
	2.2 Conventional Tor architecture

	3 Related work
	4 Design Goals
	5 Alternate hosting options
	5.1 Using a static content hosting service
	5.2 Hosting on the cloud

	6 Threat Model
	7 VaulTor
	7.1 Architecture
	7.2 Protocol
	7.2.1 Host Program (HP) Creation
	7.2.2 Bootstrapping

	7.3 Enclave Isolation
	7.4 Client connection

	8 Attack surfaces
	8.1 HS provider Anonymity
	8.2 Client privacy
	8.3 Vault privacy

	9 Evaluation
	9.1 Known Attacks Deflected
	9.2 Performance
	9.2.1 Experimental setup
	9.2.2 Results
	9.2.3 Ethics


	10 Discussion
	10.1 Additional Anonymity Measures
	10.2 HS Provider Flexibility
	10.3 Incentives for Vault Node
	10.3.1 Monetary Incentives
	10.3.2 Altruistic Reasons

	10.4 Plausible Deniability for Vault
	10.5 Legal and deployability considerations
	10.6 Incremental deployment:
	10.7 Multiple Vaults:
	10.8 Strengthening client data privacy
	10.9 Attacks against TEEs:
	10.10 Advancements/variations in TEE technology:

	11 Conclusion

