10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Dont get caught, keep your Onions in a Vault

Humza Ikram* &
Carnegie Mellon University, Pennsylvania, US

Rumaisa Habib* =24
Stanford University, California, US

Muaz Ali* =2

University of Arizona, Arizona, US

Zartash Afzal Uzmi &
LUMS University, Pakistan

—— Abstract

When web applications wish to operate anonymously, they routinely host themselves as ‘Hidden

Services’ in the Tor network. However, these services are frequently threatened by deanonymization
attacks, whereby their IP address and location may be inferred by the authorities. We present
VaulTor, a novel architecture for the Tor network that ensures an extra layer of security for the
Hidden Services against deanonymization attacks. In this new architecture, a volunteer (vault) is
incentivized to host the web application content on behalf of the Hidden Service. The vault runs the
hosted application in a Trusted Execution Environment (TEE) and becomes the point of contact
for interested clients. This setup can substantially reduce the uptime requirement of the original
Hidden Service provider, thereby significantly decreasing the chance of deanonymization attacks
against them. Using a vault node in place of the hidden service node does not cause any noticeable
performance degradation when accessing the hosted content.

2012 ACM Subject Classification Security and privacy — Pseudonymity, anonymity and untrace-
ability

Keywords and phrases Tor, anonymity, Hidden Services, Trusted Execution Environments

Digital Object Identifier 10.4230/0OASIcs.NINeS.2026.17

Funding Rumaisa Habib*: Stanford Graduate Fellowship

1 Introduction

The enormous expansion of the world wide web is coupled with growing demands for anonym-
ity and privacy. Besides a huge end-user client base, an increasing number of web services—
legal and illegal—also choose to remain anonymous [2], fearing closure, or even prosecution,
by the government and law enforcement agencies [8]. The Onion Router (Tor) [5] network
has emerged as one of the most popular solutions for providing anonymity: nearly 3 million
clients connect to Tor daily [9], and hundreds of thousands of anonymized web addresses are
published each day, with over 150,000 currently serving traffic to end users [17].

Tor Hidden Services (aka. Onion services) aim to uphold freedom of speech in repressive
regimes and offer circumvention in regions of undue and excessive internet censorship, thus
bringing benefits to the public [58]. At the same time, Hidden Services pave the way for
criminal activities such as selling illegal drugs and weapons [28]. All in all, there are incent-
ives for governments and law enforcement to deanonymize Hidden Service (HS) providers!
and curb their operations. In 2014, the authorities of 6 European countries and the United

* These authors contributed equally.
! Hidden Service Provider is an individual that owns the Hidden Service. They also create and serve the
content of the Hidden Service.

© Humza Ikram, Rumaisa Habib, Muaz Ali, and Zartash Afzal Uzmi;
37 licensed under Creative Commons License CC-BY 4.0

1st New Ideas in Networked Systems (NINeS 2026).

Editors: Katerina J. Argyraki and Aurojit Panda; Article No. 17; pp. 17:1-17:24

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:humzai@andrew.cmu.edu
https://orcid.org/0009-0009-7072-7989
mailto:rumaisa@cs.stanford.edu
http://www.rumaisahabib.com
https://orcid.org/0000-0003-1071-1204
mailto:muaz@arizona.edu
https://orcid.org/0009-0003-8495-0715
mailto:zartash@lums.edu.pk
https://orcid.org/0000-0002-6486-345X
https://doi.org/10.4230/OASIcs.NINeS.2026.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

17:2

41

2

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

Dont get caught, keep your Onions in a Vault

States collaborated in Operation Onymous through which they cracked down on 416 Hidden

Services, accused them of foul play, and arrested 17 individuals [8].

We focus on the technical challenges of reinforcing the anonymity of hidden service
providers. We present VaulTor, a novel overlay architecture that builds upon Tors existing
HS design by introducing a vault node between the HS provider and clients. The HS provider
offloads service operation to the vault, which serves clients on the providers behalf. This
setup strengthens the anonymity of HS providers in three key ways:

1. After offloading their service, the HS provider may sporadically connect to the vault to
update content as and when needed, without the need to be online all the time. This
significantly reduces the attack surface against long-running deanonymization attacks on
the HS provider.

2. The HS provider may connect to the vault from widely varying locations, further reducing
deanonymization risk.

3. An adversary cannot make an on-demand connection with an HS provider. Communica-
tion opportunities with the HS provider are now solely available to the vault, and even
those channels are initiated by the HS provider.

The service offloaded by the HS provider to the vault is hosted inside a Trusted Execution
Environment (TEE), such as the one provided by Intel-SGX [40]. Using a TEE brings
two additional benefits: (i) the vault owner (even with root access) cannot snoop on the
application code/data while it is being uploaded, served, or stored in the vault, and (ii) since
client and the HS provider contact the vault through similar encrypted channels, the vault
is never sure if it is an HS provider or a client it is communicating with, ruling out a myriad
of attacks against the HS provider (details in Sec 9.1).

The VaulTor architecture, which has no bearing on the client anonymity (discussed in
Sec 8.2), promises enhanced anonymity for the HS provider by shifting the deanonymization
risk to the vault owner (see Sec 8.3 for details). This design choice is suitable as the HS
providers may only be interested in content creation without taking the deanonymization
risk that leaps up when serving the content, even as a Tor Hidden Service. In contrast,
the vault owners are willing to serve the content in exchange for monetary benefits (such as
crypto payments?) or social incentives (serving content they wish to support and propagate).
A motivating example for our scenario might be a journalist in an oppressive regime who can
anonymously upload content banned in their regime to a vault located in a neutral country.
Another example may be providing ‘on-the-ground’ information from within a region where
internet outages frequently occur (and the HS provider cannot remain online for extended
periods).

VaulTor offers various attractive features not ubiquitous in alternate design choices: (a)
allows for hosting dynamic services, in contrast to data hosting services such as IPFS or
pastebin.com, (b) offers content isolation from the server administrator, in contrast to a
simple (non-TEE based) virtual machine-based approach, and (c) ensures that the server
administrator cannot snoop on private keys in order to serve arbitrary content on behalf of
the HS provider.

VaulTor also brings robustness to the HS operation. If a vault node is shut down by the
action of authorities, the HS provider can use a different one to make the content available.
Alternatively, if the HS provider goes offline permanently, the TEE can continue hosting the
content as long as the vault owner remains incentivized.

In VaulTor, the vault simply replaces and acts on behalf of the HS provider, responding

2 We discuss a secure way to do crypto transactions in Section 10.3

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

H. lkram, R. Habib, M. Ali, Z. A. Uzmi

to clients through network paths containing the same number of Tor nodes as if the content
is served by the HS provider in the existing architecture. Thus, the VaulTor design bears
no negative impact on the network latency. We do observe a slight average increase in the
time to first byte and time to last byte (a maximum of 5.7% and 2.9% respectively when
using Intel-SGX as the TEE), attributed to hosting the content inside a TEE which incurs
its own performance overhead (9.2.2).

To understand the operation of VaulTor, we note that a typical Tor circuit is an overlay
path through three volunteer relay nodes (the entry guard node, a middle node and the exit
node) on the Tor network [32]. Such a circuit provides one-way anonymity to a client trying
to connect via the circuit to any non-anonymous server on the web. If the server wants to
remain anonymous as well, it must also choose another Tor circuit with three nodes [24].
The existing HS architecture anonymizes both the client and the server (two-way anonymity)
using a mechanism that stitches the two Tor circuits together (see Sec 2.2). With the
VaulTor architecture, a server that desires to be anonymous is facilitated to replicate, and
infrequently update, its web content, and service on the vault. This is similar to a CDN
node offering content replication to a server. The two-way anonymity continues to exist
between the vault node and the client, delivering similar delay performance as observed in
the existing hidden service architecture. Indeed, our results in Sec 9.2.2 confirm this. We
also consider a sample of popular deanonymization attacks and provide an outline of how
VaulTor offers enhanced HS provider anonymity under those attacks (see Sec 9.1). We also
discuss legal and deployability considerations for both HS providers and vault operators in
Sec 10.5 Altogether, this paper makes the following contributions:

A novel architecture of Tor nodes, used by VaulTor to provide robust anonymity to host

Hidden Services (HS).

Step-wise description of the protocol VaulTor uses to ensure anonymity of the HS provider,

vault, and the clients.

A thorough security analysis and description of the attacks that are mitigated by VaulTor.
A working prototype and its performance measurement over the actual Tor network. The
prototype is available at: https://github.com/RumaisaHabib/vaultor

2 Background

2.1 Trusted Execution Environments (TEEs)

TEEs provide a platform for secure remote computation which allows securely executing

an application in a remote untrusted system without compromising the Integrity and Con-

fidentiality of the application data. Several hardware architectures provide TEE imple-
mentations [40, 31, 16, 48]. Our prototype implementation leverages the TEE provided by

Intel-SGX [40] to create a secure execution channel between the vault and the HS provider.

We host an HS inside the TEE which itself is set-up inside a vault (Sec 7). An instance of

a program running inside a TEE is called an enclave.

TEEs provide many guarantees. These include:

1. Sealing: A program running inside a TEE can encrypt and write data to the disk for
persistent storage. Only the same program running on the same device in a TEE can
decrypt this data.

2. Isolation: A program inside a TEE can not access the memory of its host and vice versa.

3. Remote Attestation: A piece of code running inside a TEE can prove, to an outside
observer, what piece of code it is and that it is running inside a TEE.

17:3

NINeS 2026

https://github.com/RumaisaHabib/vaultor

17:4

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Dont get caught, keep your Onions in a Vault

A local trusted device may use the following simplified flow for remote attestation to
verify that a remote untrusted device is running the desired piece of code:

1. The local device builds the code and gets a measurement of the memory space®.

2. The local device sends the code to the remote device.

3. The remote device runs this code inside a TEE.

4. When running inside a TEE, the code can then request the CPU to generate a crypto-
graphic hash of the program’s memory space. This hash is then signed by the CPU using
a secret hardware attestation key embedded in the CPU.

5. The local device can request this signed measurement from the remote device. It then
verifies this signature by matching the measurement hash against one computed locally
and by verifying the signature against its public key.

We will stick to Intel-SGX terminology, in which the signed cryptographic hash is called
a quote. Furthermore, it should be noted that a small amount of arbitrary data (produced
by the code inside the TEE) can be embedded in the quote as well. This data is called the
REPORTDATA field. Different TEE implementations employ different means for signature
verification. Intel-SGX, for example, requires sending the quote to Intel’s online Attestation
Service which verifies that the quote is valid. The local device also has the option to perform
this attestation via a proxy (such as Tor).

The REPORTDATA field is crucial for establishing a secure connection with an enclave
(program running within the TEE). This field routinely contains a public key whose corres-
ponding private key is known only to the enclave. This public key can then be used to create
a secure connection with the enclave using any form of key exchange such as Diffie-Hellman.

2.2 Conventional Tor architecture

In the current Tor protocol, there are 6 Tor nodes between a client and a hidden service (HS).

This ensures two-way anonymity, i.e., both the client accessing the HS and the HS provider

itself remain anonymous. Hidden services are identified using an onion URL. Figure 1 and

the following points detail the protocol for the establishment of communication between an

HS and a client in the current architecture.

1. An HS provider contacts a relay and asks them to act as an Introduction Point (IN)*.
The HS provider receives an acknowledgment from the IN.

2. The HS provider creates an “Onion service descriptor” which includes the public key for
the HS and the IP addresses of its INs. This descriptor is signed by the public key of the
HS. The HS provider sends this to a HSDir. The HS provider gets an acknowledgement
from one of many Hidden Service Directories (HSDirs)?.

3. A client asks the HSDir for the service descriptor of the HS. They receive and verify the

signature of the HS.

The client picks a Tor relay to act as a Rendezvous Point (RP) and establishes a Tor

circuit to it. The client gives the RP a Rendezvous cookie.

The client sends the same Rendezvous cookie and the IP address of the RP to an IN.

The IN forwards the cookie and Rendezvous address to the HS provider.

The HS provider makes a Tor circuit with the Rendezvous Point and sends the cookie.

The Rendezvous Point compares the two cookies and, if they match, relays communica-

P

@ N o

tion from both sides to each other.

3 This includes the code itself, the data, the stack, and the heap.
4 IN is chosen to be distinct from Internet Protocol (IP)
5 HSDirs are special relays that store and provide hidden service descriptors to the clients.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

H. lkram, R. Habib, M. Ali, Z. A. Uzmi

3 S 2
HSDir
5 —— Q
—
Client IN Provider
u /4
4 Q 7
<\ <
7> RP

Figure 1 The current implementation of hidden services. Red paths represent information flow
through Tor circuits with 6 nodes. Green paths represent information flow through Tor circuits with three
nodes. Blue paths represent information flow through Tor circuits with only two nodes.

3 Related work

There are two notable prior works that leverage TEE technology to improve Tor. In SGX-
Tor [45], different nodes (such as Directory authority, HSDir, and middle nodes) run the Tor
software in TEEs so that they cannot be modified to collude and launch deanonymization
attacks. In contrast, VaulTor reduces the deanonymization threats by not requiring the
HS provider to be online. Furthermore, VaulTor is an architectural solution that does not
require any Tor node to run their service within TEE (unless they volunteer to be a vault),
thus maintaining backward compatibility for Tor nodes.

Another approach, SmarTor [14], utilizes TEEs and smart contracts to decentralize dir-
ectory authorities (which are currently a few trusted and centralized servers) in the Tor
network. The authors argue that this would increase the security of the Tor network as
it would reduce the need to trust particular servers and make it more difficult for govern-
mental authorities to crack them down. VaulTor, on the other hand, leverages the privacy
guarantees provided by the TEEs to create trust by allowing a separate, new entity (the
vault) to host web application content, thus making it harder to deanonymize the Hidden
Service provider.

Additional prior works [7, 20, 55, 62] have also suggested modifications to the Tor network
to enhance HS anonymity. Sec 10.1 discusses these solutions and their potential use cases.
There exists a whole body of work aiming to improve the Tor network in general. Security
improvements include a layered mesh topology [33] for circuit formation and prevention of
route capture attacks [51]. There has also been work to improve client-side stability in
censored regions using WebRTC [25, 35, 19].

Performance improvements include optimizing the Tor path selection algorithm [12, 15,
59, 65] and load balancing techniques [13, 30, 44]. In particular, CenTor [17] considers
serving content from multiple CDN-like content replication nodes to improve the content
delivery time. These improvements can be applied in conjunction with VaulTor to further
optimize the anonymity network (see Sec 10.1).

17:5

NINeS 2026

17:6

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

Dont get caught, keep your Onions in a Vault

4 Design Goals

Our design goals are meant to ensure enhanced anonymity for HS-provider, while ensuring

that anonymity guarantees for other parties (i.e., client, vault node) remain intact.
We will outline our design goals succinctly here:

1. Ensure that the anonymity guarantees for the HS provider in VaulTor are at least as
strong as an HS provider in the conventional Tor architecture.

2. Minimize the uptime for the HS provider, shrinking the attack surface against them.

3. Ensure that the anonymity guarantees for the newly introduced Vault node are at least
as strong as those for an HS provider in the conventional Tor architecture.

4. Ensure that the anonymity guarantees for the client remain at least as strong as those
for a client in the conventional Tor architecture.

5. Ensure that the HS provider retains full control of any content that is being served on
its behalf.

6. Ensure that the system is able to serve rich content (not just limited to static content).

7. Ensure that the system is backward compatible and is built using off-the-shelf components
and technology.

5 Alternate hosting options

The VaulTor architecture meets all our design goals specified in Sec 4. Other simple alternat-
ives for anonymous content hosting may not satisfy this requirement. This section considers
two such possible alternatives and describes why they are unable to achieve the full set of
our design goals.

5.1 Using a static content hosting service

An HS provider may upload static content to a data hosting service like an IPFS. While
it is possible that the HS provider is able to upload content securely, this content can not
be modified dynamically and, thus, fails to meet our fifth design goal. For example, an
HS provider trying to a run a forum online will not be able to get posts or comments by
clients. VaulTor permits dynamic content to be served which allows the HS provider to host
complicated websites on an external server.

5.2 Hosting on the cloud

An HS provider may host data dynamically on a virtual machine present on an external server
(or a public cloud). They may use a remote login tool such as SSH (and the Tor proxy) to
anonymously access the server and upload their content. However, the administrator of the
server (with root access, or the cloud operator) may be able to access and modify this data
even if the HS provider wishes to restrict access. This means the provider does not maintain
full control over the content, violating the fourth design goal.

In VaulTor, the administrator cannot access data that is present inside the TEE. This
data exists either in an encrypted manner on the disk or is only accessible to the TEE if the
data is in the main memory. Lastly, as both the client and HS provider make an encrypted
channel with the TEE, content is safe while in transit.

An HS provider that uploads their content to an external server (via SSH or through
other means) is not guaranteed that this content will be served without modification. The
administrator of this server may modify this content (while keeping the same URL and x509

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

H. lkram, R. Habib, M. Ali, Z. A. Uzmi

certificate) and serve content that the administrator desires. This is possible because the
administrator can snoop the private key from main memory or storage, presenting a major
threat to client anonymity. On the other hand, VaulTor guarantees that the content served
to a client is the content intended by the HS provider. The enclave creates a certificate and
is the only entity (alongside the HS provider) that can serve this content.

An HS provider may choose to provision cloud services that enable TEEs and host
their content inside one. In this scenario, the cloud would act as an intermediary, reducing
the uptime requirement for the HS provider. However, provisioning cloud services isn’t
anonymous. Know-your-customer (KYC) and/or payments via fiat currency can compromise
the anonymity of the HS provider. It would also necessitate online transactions, which may
be untenable in regions of instability, where volunteer vaults may be the only option.

6 Threat Model

We make realistic assumptions about the objectives and capabilities of adversaries. An
adversary may have access to a small fraction of Tor relays and sufficient resources to
qualify as a guard relay, HSDir, or a vault. Moreover, a malicious vault may be able to
target specific HSes to host in their machine for the explicit purpose of deanonymizing the
HS provider and clients of that service or for the purpose of modifying that service. Even a
strong adversary will have a limited ability to acquire network traffic from ISPs and monitor
traffic patterns between an end user and a guard node. We wish to protect the anonymity
of the HS provider from this adversary and retain the control of the HS provider over any
content that the HS is providing. In addition, a malicious HS may attempt to deanonymize
a specific vault by hosting their web content on a TEE that the vault runs. As discussed in
sec 2.1, we do not consider side-channel attacks.

We also assume that any two entities (amongst the vault, HS provider and client) can
collude to launch an attack against the third. For example, an HS provider and a client may
work together in an attempt to deanonymize a vault.

Moreover, we assume a careful HS provider. That is, we assume that the HS provider
does not leak identifying information in the content it provides. Furthermore, at time ¢, it
will refuse to offload any content to a vault unless it verifies that, at time ¢, it is connecting
to a valid enclave (this is a realistic assumption as verification is an easy task). Similarly, we
assume a careful vault. That is, a vault inspects the program provided by an HS provider
for malicious code, and will not run this program if it deems it malicious.

7 VaulTor

7.1 Architecture

Building upon the conventional Tor hidden services architecture (Sec 2.2), VaulTor intro-
duces three new entities: a device which we refer to as a vault, a TEE which will host an
enclave and an optional external attestation service. The enclave is present inside the vault
(see Figure 2) and utilizes its computational resources.

In VaulTor, a willing device may offer to host content by advertising itself as a vault. This
can be achieved without modifications to the current Tor architecture. The vault creates
an onion address for itself (we shall refer to this onion website as the Vault Contact Hidden
Service (VCHS)) to facilitate correspondence with potential HS providers. Vaults may ask
for compensation for hosting an HS (further discussion on incentives is given in Sec 10.3).

17:7

NINeS 2026

17:8

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

Dont get caught, keep your Onions in a Vault

Vault

TEE

Host Program

Update interface

Quote generation >
% < Webpage hosting %
%) \—..—/ ®
Client v HS Provider

Web content
(HTML, CSS, etc)

)

1 Persistent !
backup (encrypted)

Figure 2 Our proposed implementation. Red paths represent information flow through Tor circuits
with 6 nodes. The data inside the enclave is secure and information flow through the arrows is encrypted
i.e., the vault owner can not interpret it.

In this scenario, the vault has the same privacy guarantees that the Hidden Services have
in the current Tor architecture.

The HS provider can reach out to a vault through the vault’s VCHS and provide a basic
program which we shall refer to a host program (HP) that 1) hosts a web server and 2)
provides an interface through which (only) the HS provider can upload or remove content
when they wish to update their website®. This program must be running inside an enclave
to provide the privacy guarantees detailed in this architecture. Thus, the HS provider must
verify that the enclave has been correctly set up (i.e., the program is running without any
modifications to the code and within a TEE) before it provides all of the content it wishes
to host and any incentives to the vault owner. Future content is also provided through the
same update interface described earlier. This process is outlined in detail in Sec 7.2.2.

The TEE guarantees security and privacy for any content the HS provider transfers into
the vault. In addition, it removes the requirement for continuous up-time of the original
HS provider as the enclave can continue servicing the clients. While the vault must remain
online to serve web content, the HS provider does not have this obligation and is hence
protected from various deanonymization attacks (Sec 8).

Our architecture ensures increased anonymity and flexibility for the HS provider, minimal
decrease in performance for a client (while maintaining the same security guarantees that
Tor provides), and a level of anonymity for the vaults that is comparable to that of HSes in
the current Tor architecture.

7.2 Protocol
7.2.1 Host Program (HP) Creation

Before an HS provider contacts a vault, it must write a host program that is intended to
run within the TEE. This program should provide the following key functionalities:

% The interface asks for a secret and after it is verified, the content can be uploaded or removed as desired.
Since the secret verification occurs within the script that is running within an enclave, the vault cannot
tamper with it without being noticed by the HS provider.

H. lkram, R. Habib, M. Ali, Z. A. Uzmi 17:9

311 It should host a server” bound to a port. This server should be able to handle POST
312 and GET requests. Furthermore, the code should be able to handle requests dynamically.

313 For example, it should be able to store files uploaded by a client in separate directories.
314 The HP should, by default, provide an interface on the server to input an authentication
315 secret. If the secret (which is known to the HS provider) passes the hardcoded verification
316 in the HP, the HS provider should be allowed to modify the contents of the enclave
317 directory. The authentication key can either be a password that is hashed and compared,
318 or it could be the HS provider’s private key whose corresponding public key is written in
319 the HP.

320 Upon starting the server, the program should generate a quote file, that can be verified
321 by the HS provider or a client (details given in Sec 7.2.2). This quote file is available in
32 the web directory and can be accessed by the HS provider or the client for verification
23 through remote attestation as described in Sec 2.1.

324 The HP should provide some functionality to create backups of the hosted content in
35 case the vault crashes. Backups are stored on the disk but encrypted using the enclave’s

326 sealing key. This sealing key is deterministically generated by the CPU depending on
307 the program running inside the TEE and the key burnt into the CPU. This key is only
328 available to the enclave.

329 Running an arbitrary application inside a TEE is not straightforward. However, a library
a0 OS (1ibOS), such as Gramine-SGX, facilitates this process with minimal modifications to the
sn application. Furthermore, since the entire 1ibOS is contained inside the TEE, no inspection
s of the application code is necessary. To this end, we assume that a libOS like Gramine-SGX
33 is available to the vault.

s (.2.2 Bootstrapping

35 The vault owner hosts and advertises the onion URL of its VCHS. The HS provider, vault
136 owner and the HP (running inside a TEE) take the following steps to host their service in
s the vault (also shown in Figure 3):

s (1) The HS provider creates the HP (with the functionality described in Sec 7.2.1).

a0 (ii) The HS provider uploads the HP at the VCHS. It is important to note that the host

340 program is uploaded in plaintext (either as a script or a binary).

sa (iii) The vault owner runs the HP inside a TEE, hosts a hidden service (we shall refer to
32 this as yourHS.onion), and binds it to the network port on which the host program will
3 handle incoming requests.

s (iv) The host program will generate a public-private key pair (P, Ssrv) for the hidden
35 service it provides. Py, is made available to anyone who connects to yourHS.onion while
6 Sarv only exists as a variable inside the enclave’s memory (and is sealed to the disk for
47 persistent storage).

1 (v) The host program generates a quote which represents P8 and the program. This quote
39 is available to anyone accessing yourHS.onion.

30 (vi) The HS provider accesses yourHS.onion, retrieves the quote, and verifies that the quote
351 is legitimate®.

7 Common servers such as Apache or Nginx can be used.

8 If the size of Psyv is too large to fit inside the REPORTDATA of the quote, a hash of Ps may be used.
If P is embedded in a certificate, then typically the certificate hash is used.

9 In Intel-SGX, this may involve sending this quote to Intel’s online attestation service. In RISCV
Keystone, the end user can verify the quote themselves.

NINeS 2026

17:10

Dont get caught, keep your Onions in a Vault

i)
< TN @ ()
Client (x) o /‘»%Hg
(iii) (vi-ix) Provider
(vi)
(iv,v)ﬁ(xi) .:
ENCLAVE
Attestation
VAULT service

Figure 3 Our proposed implementation. Red paths represent 6-node circuits and green paths represent
8-node circuits.

s2(vii) The HS provider creates a secure connection with the enclave using Py, and any form

353

354

of key-exchange such as Diffie-Hellman. This public key (Pyy) may be embedded in a
self-signed x509 certificate in order to facilitate https connections.

ss¢viii) The HS provider supplies the authentication secret over this secure connection, after

which it can securely upload content (such as HTML, CSS, PHP, and JavaScript files).

ss7 (ix) The enclave hosts the uploaded web application content.

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

(x) Any client that connects to yourHS.onion can interact with the hosted web application.

(xi) The enclave regularly encrypts and backs up these files into non-volatile storage using

the sealing key.

This procedure ensures increased anonymity for the HS provider. Their data is hosted
in the vault and the vault owner can not access data inside the enclave or read the traffic
in or out of the enclave. Figure 4 provides a flow diagram of this process detailing some
decisions the HS provider must make while uploading to the vault.

7.3 Enclave Isolation

To ensure the protection of the vault, the enclave must have limited privileges. The following

conditions, at minimum, are necessary:

1. The enclave has access to a fixed, and limited, amount of RAM. One possible way to
achieve this is by running the enclave within a virtual machine!® configured with limited
memory. This prevents an enclave from occupying all available RAM, thus safeguarding
the performance of other programs on the vault.

2. The enclave can only use a fixed amount of persistent memory. This can be achieved
by isolating the enclave in a separate disk partition. This prevents an enclave from
completely filling up persistent disk space that should be available to other programs on
the vault.

3. The enclave can only use a fixed amount of network resources. This is possible by
controlling the network traffic rate through Trickle [6].

4. Any connections going out from the enclave must be restricted to only go via the Tor
Proxy. This can be done by creating rules in iptables [4]. This is necessary to ensure

10The maximum ram must be set in Intel-SGX at enclave creation time.

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

H. lkram, R. Habib, M. Ali, Z. A. Uzmi

A vault creates a Vault An HS Provider accesses
Contact Hidden Service: vaultabc.onion and uploads its

vaultabc.onion Host Program (HP)

\ 4

Run the HP within a TEE, host it on
HS provider receives: Tor and inform HS provider of the . .
an active onion url onion url on which it is hosted HS provider does not receive
(yourHS.onion) the onion url, or it is inactive
No quote file is generated The HS provider suffers no loss as it has

. not provided and will not provide any
1—2;:' 3@[0;’:1?233%‘72:3: m: The HP has been modified confidential data (only the HP is sent,
(detected through the quote file) which may be known to all). The HS

quote file generated and hosted

when the HP is run provider has also not supplied monetary

incentives to the vault at this point either.

HS provider verifies that
the HP is unmodified by

Quote file is generated verifying the quote file.

The HS provider can access the update _ "
interface provided by the unmodified HP The HP is unmodified

using the HS provider's secret. The ¢
webpage is populated with the intended Y
content and the bootstrapping is complete. Trust this vault Do not trust this vault.

Figure 4 The steps taken in order for an HS provider to trust and upload to a vault.

that the IP of the vault is not made available to the HS provider. Any traffic that is

not going out through port 9050 (the default Tor Proxy port) is blocked by a firewall.

Furthermore, any traffic going to the Host Program must originate from the Tor client
11

7.4 Client connection

A client must ensure that it is connected to the correct HS identified by its Py, (embedded
in an x509 certificate). To this end, the HS provider distributes not only the onion URL
but also the hash of the x509 certificate when it wishes to advertise its service (similar to
how conventional onion URLs are advertised). When connecting to an HS hosted on a vault,
the client only needs to verify that the x509 certificate supplied by the service matches
its advertised hash to ensure that it is connected to the appropriate entity. The client may
maintain a list of valid certificate hashes'?. Note that the client never has to perform remote
attestation themselves.

The client in VaulTor is exactly the same as a client in the conventional Tor architecture
— they use the same connection protocol. Layered on top of this is the ability to match
an xb09 certificate (or its hash) with the one that is advertised by the HS provider. This
matching can be done trivially with a browser extension to the Tor browser.

8 Attack surfaces

In this section, we specify the anonymity guarantees the VaulTor provides to each of the
three entities: the client, the vault, and the HS provider. We consider the scenarios where

' This is to done to preserve vault anonymity from a malicious HS provider as discussed in 8.3.
12 Checking of certificate hash is trivial and may be added as a subroutine in the client’s Tor browser.

17:11

NINeS 2026

17:12

400
401
402

403

404

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424

425

426

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442

443

Dont get caught, keep your Onions in a Vault

each of these can be malicious as well as the scenario in which two of them collaborate
to deanonymize the third. VaulTor enhances HS provider anonymity and leaves the client
anonymity as it is. We further show that our new actor—the vault—is as protected as an
HS provider in the current Tor Hidden Services architecture.

8.1 HS provider Anonymity

Scenario 1: Malicious client

The HS provider no longer interacts with the clients directly. To access the web applica-
tion content, the clients now establish a connection with the vault instead. Thus, unless the
HS provider leaks identifying information in their content, they are safe from deanonymiza-
tion at the hands of a client.

Scenario 2: Malicious vault

In the traditional Tor design, where the client and HS provider communicate over a two-
way anonymous channel initiated by the client, the attack scenarios in Table 1 render the
client a harder anonymity target by a malicious HS provider than an honest HS provider by
a malicious client. A mirror situation exists in the VaulTor design where the HS provider
uploads and updates the content on a vault over a two-way anonymous channel. Thus,
even in the worst case, an HS provider in VaulTor is as anonymous as an HS provider in
the traditional architecture. Furthermore, the minimal uptime requirement enhances the
anonymity of the HS provider in VaulTor architecture. The use of TEE at the vault offers
additional guarantees of data integrity and data confidentiality to the HS provider.

Scenario 3: Vault and client collude

The attack opportunities open to a client are a subset of the attack opportunities possible
for a vault (since a vault has the same privileges as a client and more). Thus, the protection
guaranteed for an HS provider from the vault applies in a scenario where the vault and client
may collude.

8.2 Client privacy

We now show that a client is as protected in VaulTor as they are in the current Tor archi-
tecture.
Scenario 1: Malicious HS provider
The HS provider is completely disconnected from the client, and hence is unable to
launch attacks on the client directly.
Scenario 2: Malicious vault
A malicious vault may attempt to a) serve modified content or b) launch a deanonymiza-
tion attack on the clients. We now show why these attacks are not feasible in our architecture:
a) As the content is being hosted inside an enclave, clients can ensure that any content
being served by the vault has not been maliciously modified. Since the x509 certificate
is generated by the HP running inside a TEE and the corresponding private key (Sgv)
is only available to the TEE and the HS provider, a secure connection established using
the certificate is guaranteed to be serving content vetted by the HS provider. Another
consideration is that the content being hosted inside a vault is regularly encrypted and
backed up to the disk. While this backed-up data can not be modified, a vault owner can
selectively delete this backed-up data and restart the program in the enclave. This may
result in the enclave accidentally serving outdated data to clients. However, if pieces of

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

H. lkram, R. Habib, M. Ali, Z. A. Uzmi

content are properly timestamped, the TEE can refuse to serve content that is outdated
or add warnings while serving this content.

b) In VaulTor, a client’s perspective of the Hidden Service architecture remains the same. A
client still accesses content through a 6-node connection—except that instead of connecting
to the HS provider, it connects to a vault. Thus the client enjoys the same privacy
guarantees as a client in the conventional Tor architecture. Furthermore, as discussed in
sec 10.8, the client may enjoy enhanced data privacy.

Scenario 3: Vault and HS provider collude
A colluding vault and HS provider in the VaulTor architecture have the same attack

opportunities against a client as a malicious HS provider in the conventional Tor architecture.
Thus, the deanonymization risk for the client is the same as when only the vault is malicious.

8.3 Vault privacy

VaulTor introduces a new entity in the Tor architecture: a vault that assumes a role similar
to that of an HS in the current Tor design, thus maintaining a similar level of protection
against deanonymization attacks.

Scenario 1: Malicious client

A vault is as vulnerable to a client as a Hidden Service is in the traditional Tor network.

One may even argue that the vault has stronger anonymity guarantees due to the fact that
the web application content is hosted within an enclave (a secret, protected environment
the vault cannot modify). This may provide plausible deniability to the vault as it would
be blind to the traffic that enters and leaves its enclave.

Scenario 2: Malicious HS provider

A vault is protected from attacks launched by an HS provider through the Host Program
by ensuring that the safety criteria specified in Sec 7.3 are satisfied.

Consider a malicious HS provider who uploads code that tries to obtain identifying
information about the vault by leveraging the fact that the enclave is utilizing the vault’s
hardware. For example, this code may try to read files belonging to the vault or the vault’s
OS in order to directly find identifying information or it may try to obtain its IP indirectly by
pinging an external server. The security guarantees provided by TEEs make direct attempts

impossible; the host is also isolated from the TEE just as the TEE is isolated from the host.

Furthermore, most applications for TEEs run in a VM (as is the default in gramine-SGX [1]),
adding to the isolation. Indirect attacks are also mitigated using a firewall. By ensuring
that all outgoing traffic is ported through port 9050 (the default port for Tor), only the TP
of the exit node is available to the Host Program.

Furthermore, by ensuring that all requests originate from the Tor client software on the
vault, the vault is protected from pinging based attacks. If this is not done, a malicious HS
provider may upload a simple Host Program that replies with a unique phrase to the HS
provider’s IP when this Host Program is pinged. The HS provider may then ping various
candidate IPs in the hopes of stumbling upon the vault’s IP which would reply with the
phrase. This sort of attack is only possible if the Host Program can be pinged directly, from
outside the Tor client software.

Scenario 3: Client and HS Provider collude

The HS provider is in a unique position as it directly provides code that the vault runs
within an enclave. If an entity controls both the HS provider and a client node, we consider
an attempt to launch a watermarking attack (described in Sec 9.1). This attack, in particular,
only requires the control of two entities connected to the third. Moreover, the fact that the

17:13

NINeS 2026

17:14

490
491
492
493
494
495
496
497
498
499
500

501

502

503
504
505

506

507

508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532

533

Dont get caught, keep your Onions in a Vault

HS provider and client can make repeated on-demand requests to the vault further benefits
the viability of this attack.

To attempt to launch a watermarking attack (similar to what [38, 39] describe), the HS
provider would add some watermark to the Tor traffic that can be identified at the client
end. Despite controlling both the HS provider and a client, an attacker would not have
the ability to successfully launch a watermarking attack on the vault. This is because of a
missing component that this attack requires: the control of a guard relay. If we also assume
the control of a guard relay, the HS provider is no longer necessary, as the guard relay can
be the entity that watermarks the traffic. A guard relay and client could potentially launch
this attack on their own without the requirement of an HS provider. Hence, the vault is as
protected from a watermarking attack as an HS is in the current architecture. Scenario 3 is
thus akin to having two malicious clients in the conventional Tor architecture.

9 Evaluation

In this section, we will qualitatively evaluate the effect of VaulTor in deflecting various
families of existing attacks on HSes from the HS provider to our new Vault node. Afterwards,
we will quantitatively measure the performance impact of VaulTor on client side network
performance.

9.1 Known Attacks Deflected

We will list various attacks and briefly explain how the VaulTor architecture deflects them
from the HS provider to the vault. This list is non-exhaustive yet exemplifies the prominent
attacks in recent years.

Clock Skew: These attacks rely on repeatedly sending requests to an HS in order to
heat up its CPU which has some tangible effect on the timestamp of incoming packets [60, 52].
In VaulTor, this is impossible. No one can repeatedly send packets to the HS provider.

Congestion: This attack relies on an adversary congesting existing guard nodes in the
network [42], forcing the HS to connect to their compromised guard node long enough for
the adversary to correlate traffic. This attack is completely deflected in VaulTor; the HS
provider is sporadically online for limited periods and an adversary would have to congest
the network indefinitely.

Fingerprinting: These attacks rely on learning the traffic patterns of an HS and ref-
erencing this against the traffic of a candidate set of guard nodes [46, 57, 53, 36]. In our
architecture, the vault is serving the traffic while the HS provider is taciturn. Thus, this
type of attack will not work on the HS provider. Similar attacks that rely on compromised
middle nodes [41] are similarly deflected.

Guard Node Discovery: The Tor developers currently consider this the most potent
threat against hidden services [7]. This attack relies on making multiple connections with
the HS provider such that their malicious middle node is next to the HS provider’s guard
node. Repeated, on-demand connections with the HS provider are impossible in VaulTor.
As such, this attack is eliminated.

Location Leaks: Such attacks rely on the negligence of the HS provider and are out of
the scope of this paper [49].

Watermarking: In this type of attack, an adversary watermarks traffic on the client
side in order to detect it at the malicious guard node of the HS provider [38, 39]. If a
malicious vault node tries to launch this attack on the HS provider, this attack would be

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

H. lkram, R. Habib, M. Ali, Z. A. Uzmi

rendered less effective because HS-provider would have minimal uptime connection with the
vault code instead of a constant connection.

Table 1 shows the various scenarios in which an adversary can launch a deanonymizing
attack on Tor Hidden Services along with the impact of VaulTor on these attacks.

Scenario Attack Categories VaulTor impact

Adversary can send Clock Skew, Watermarking, .

. . Scenario
arbitrary requests Guard Node Discovery, ..

. . L eliminated

to the HS provider Fingerprinting
HS Provider has Clock Skew, Watermarking, Scenario
high uptime Congestion, Fingerprinting diminished

High volume of
traffic coming from
the HS provider

Table 1 Various scenarios that lead to categories of contemporary attacks on Tor Hidden Services
along with the impact of VaulTor on these scenarios.

Watermarking, Congestion, Scenario
Fingerprinting diminished

9.2 Performance

It is important that the security improvements VaulTor brings do not significantly degrade
client side network performance. Important client side performance metrics include the
network latency and the throughput. In this section, we detail our experimental setup
(which includes our implementation of a vault) and our evaluation of these metrics. Our
experiments measure the time experienced by the client to retrieve the data from an HS; the
registration and bootstrapping processes in VaulTor occur only once and have a negligible!'3
performance impact in the overall lifetime of the HS.

9.2.1 Experimental setup

To measure and compare the network performance of Hidden Services when hosted within
and outside a TEE, we ran two instances of a Host Program on the same machine. One of
these HPs ran inside a TEE (facilitated by the gramine-SGX library OS [1]) while the other
HP (which we shall refer to as a vanilla HP) ran outside a TEE. A Tor client'* was also
launched on the same machine which generated two onion URLs: one for the enclave and
one for the vanilla HP. The Tor client directs traffic for each of these onion URLs to their
respective HPs, allowing them to serve content via Tor.

Both the enclave and the vanilla HP ran webservers and, in order to ensure consistency,
served the same landing webpage simultaneously. In addition, the HP running inside a TEE
had the ability to generate a quote in order to facilitate remote attestation. Both web servers
were written in Python3 and regularly backed up data to persistent memory. Moreover, these
webpages were hosted on the same device with an SGX-enabled Intel processor (Core-i5
102100).

We conducted these experiments with three webpages, each with varying page sizes

(0.5kB, 50kB, and 5000kB). The content on these webpages included HTML and JavaScript.

13 This performance impact will only be negligible if uploading content does not significantly increase the
uptime of HS provider.

M This client is not the same as a client in Tor architecture which we have discussed above. This is a
program necessary to interact with the Tor network.

17:15

NINeS 2026

17:16

562
563
564
565
566
567
568
569
570
571
572

573

574

575
576
577
578
579
580
581
582
583
584
585
586
587
588
589

590

Dont get caught, keep your Onions in a Vault

We measured the performance using three methods:
1. Random Relays: We restarted the Tor application between each measurement to establish
fresh circuits. This gave us three random relays for every measurement.
2. Fized Relays: We used fixed/constant relays'® across webpages for both VaulTor and
Tor. We report the average performance of three different fixed circuits.
3. Local: We locally accessed the webpages.
Each webpage was loaded 250 times in each of the methods, save for the Fixed Relays method,
for which we loaded each webpage 250 times on each circuit (a total of 750 measurements)
and took the average of the results. Methods (1) and (2) were conducted on the actual Tor
network.
We thus quantified any overall changes in performance caused specifically by hosting an
HS within a TEE.

9.2.2 Results

=3 Tor [VaulTor [Tor [VaulTor T == NonTEE I TEE
% 1004 ©20 % 0.024
: ¢ ;
£ 50 £ 10 £ 0.01
0 s 3 O o o JPPS o
0.5 50 5000 0.5 50 5000 0.5 50 5000
Webpage size (kB) Webpage size (kB) Webpage size (kB)
(a) Random Relays, TTFB (b) Fized Relays, TTFB (¢) Local, TTFB
107 3 Tor [ZJ VaulTor 7 3 Tor B33 VaulTor 0037 =3 Non-TEE [TEE
3 100 Z20 T 0.024
F 504 F 10 i 0.01
0.5 50 5000 0.5 50 5000 0.5 50 5000
Webpage size (KB) Webpage size (kB) Webpage size (kB)
(d) Random Relays, TTLB (e) Fized Relays, TTLB (f) Local, TTLB

Figure 5 Time to first byte (TTFB) and time to last byte (TTLB) for webpages with varying page
sizes without and within a TEE. Error bars represent 99% confidence intervals.

Figure 5 shows the time to first byte (TTFB) and time to last byte (TTLB) for the 3
webpages hosted in the 2 architectures (the current architecture and VaulTor).

We note a minimal difference in performance across webpages and testbeds. Note that,
for most of the results collected over Tor, the average TTFB and TTLB in the VaulTor
architecture fall within the 99% confidence interval of those of the current architecture. The
only result (collected over the Tor network) that lied outside the confidence interval was for
the TTLB of a 5000kB webpage routed through fixed relays. This had an average increase
of 2.9%.

If we consider all the results, including those that lie within the confidence intervals, we
note a maximum increase in TTFB and TTLB of 5.7% (5000kB, Random Relays) and 2.9%
(5000kB, Fixed Relays), respectively.

It should be noted that running an arbitrary program inside an Intel-SGX TEE may have
a non-negligible computation overhead. When accessing the webpages locally (and hence,
not over the Tor network), we note a maximum percentage increase in time in the case of
the TTFB of a webpage of size 50kB (15.9%). However, this delay is negligible compared
to delays caused by Tor’s network latency. As such, it is not surprising that the percentage

15 These were chosen randomly from advertised Tor relays here: https://www.dan.me.uk/tornodes

https://www.dan.me.uk/tornodes

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

H. lkram, R. Habib, M. Ali, Z. A. Uzmi

performance overhead of VaulTor over the conventional Tor architecture is minimal when
measured over the real Tor network.

We believe this nominal decrease in performance is justified considering the major an-
onymity benefits VaulTor brings to the HS provider.

9.2.3 Ethics

We had ethical considerations while conducting our performance measurements. We solely
collected timing information and the size of the files we downloaded. We did not store the
IP addresses of the entry and exit nodes, so as to preserve their anonymity. In addition,
our load on the Tor network was negligible. We ensured this by conducting the experiments
serially, and not in parallel, to minimize the load at any given time. To the best of our
knowledge, we did not hinder any other users’ experiences on the Tor network.

10 Discussion

10.1 Additional Anonymity Measures

There exist a number of proposals (such as [7, 20, 55, 62]) that enhance the anonymity of
the HS provider. These solutions, however, result in degraded network performance (longer
delays and lower throughput) for the client, when used in the conventional HS architecture.
This reduction in network performance renders these solutions less attractive today. With
the VaulTor architecture, the vault serves the content to the clients, and any retrofitting at
the HS provider side has no bearing on the network performance experienced by the client.

For example, the Vanguard add-on [7] (which inserts additional hops in the connection)
may be used by the HS provider without affecting client-side performance. Similarly, privacy-
preserving path selection methods [20, 55, 62] may incur latency costs but are a non-issue
for an HS provider that connects with the vault infrequently.

Furthermore, techniques like temporary proxies are completely compatible with our sys-
tem and may be used by clients and the HS provider to connect to vaults to obfuscate their
traffic [25, 35, 19].

10.2 HS Provider Flexibility

In the current Tor architecture, the HS provider must remain static in order to serve content.
The flexibility offered by VaulTor can be leveraged by the HS provider to communicate from
secure and variable locations. This would especially be beneficial in the context of activists or
journalists who want to report their content from secure intermediate locations in oppressive
regimes without the risk of getting caught. Moreover, VaulTor would allow the HS provider’s
content to remain accessible during Internet outages, which is commonplace in regions with
political instability and censorship [21, 22].

10.3 Incentives for Vault Node

10.3.1 Monetary Incentives

The vault owner proxies for the HS provider and, on its behalf, serves content to the clients.
This act must be incentivized for the vault owner. These incentives may be social incentives
— similar to how users of Tor run relays and nodes.

17:17

NINeS 2026

17:18

630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650

651

652

653
654
655
656
657
658
659
660
661
662
663
664

665

666

667
668
669
670
671
672
673

674

Dont get caught, keep your Onions in a Vault

However, if incentives are monetary, they must be exchanged in a secure and private
manner. Towards this end, a blockchain may be used to ensure that the vault owner receives
cryptocurrency rewards for hosting content for the HS provider. One approach to this is
that the vault owner supplies the HS provider with their address on a public blockchain such
as Ethereum [67]. Only if regular cryptocurrency payments are made to this public address
does the vault owner continue hosting. This allows both the HS provider and the clients to
“crowdsource” an HS on a vault.

This previous approach does necessitate timely payments from the HS provider. This
requirement can be removed via the use of smart contracts. A smart contract can lock
the cryptocurrency that it receives from the HS provider and clients. The smart contract
can then use an oracle to verify that the HS is being hosted properly and perform remote
attestation. If the HS is being hosted properly and the remote attestation is successful,
the smart contract releases the cryptocurrency to the vault’s blockchain address. In order
to preserve privacy, zero knowledge enabled cryptocurrency such as Zcash [23] can be used.
Furthermore, a Decentralized Exchange (DEX) may be used to trade cryptocurrency. These
measures reduce the possibility of profiling based attacks.

For example, a vault owner may make their zero-knowledge blockchain address (such
as for monero [56]) available on VCHS and the HS provider may anonymously transfer this
cryptocurrency by publishing their transaction by connecting to an external blockchain node
through the Tor proxy. In a zero-knowledge blockchain, the transaction itself will have no
identifying information present in it that may be used for social engineering (such as, by
using chain analysis tools).

10.3.2 Altruistic Reasons

Vault operation may also be motivated by altruistic considerations rather than direct fin-
ancial compensation. This model closely mirrors the operation of Tor relays, where parti-
cipants voluntarily contribute resources to enhance privacy, censorship resistance, and overall
network resilience without receiving monetary rewards. While operating a Tor relay may
incidentally support unlawful activities, it also enables many socially beneficial uses, such
as protecting free expression and providing access to information under restrictive condi-
tions. Similarly, vault nodes may be used for both benign and potentially abusive purposes;
however, their primary value lies in supporting privacy preserving and censorship resistant
services.

Similar altruistic participation models exist in other systems, including running VPN
or proxy servers for community use, and operating public Network Time Protocol (NTP)
servers. In these cases, operators are motivated by a desire to support open infrastructure,
enhance collective security, or contribute to public-good Internet services.

10.4 Plausible Deniability for Vault

In the VaulTor architecture, a vault owner is not privy to the content present inside the TEE.
We believe that this adds an extra layer of plausible deniability, greater than the plausible
deniability of conventional data hosting services that are aware of the content being served.
When hosting content on behalf of an HS provider, the only thing the vault owner knows
is the Onion URL of the Hidden Service. This has a parallel with Guard Nodes in the
conventional Tor architecture that know what Onion URL’s traffic is routed through them.
Both the vault and the guard node can not read this traffic or compromise its integrity, only
help move this content. The only difference is that the physical storage resources of the

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

H. lkram, R. Habib, M. Ali, Z. A. Uzmi

Vault owner are being used. However, even this physical storage is encrypted and opaque to
the Vault owner which is not privy to the information being served, just like a guard node.

In our future work, we can enable vault owners to run a Tor client inside an enclave and
run the HP inside another enclave on the same machine. The Tor client generates a new
onion URL and shares it (only) with the Host Program. The HP then serves content on
this onion URL using the Tor client as a proxy. The HP also forwards the onion URL to
the HS provider who can then advertise it as before. In this scenario, the client does not
need to modify their browser. As such, the vault owner is not aware of the content they are
serving. In this scenario, they can not be held liable for the content they are serving as the
information about which machine is serving what content is available to “no one”. And “no
one” includes the vault owner and the HS provider.

10.5 Legal and deployability considerations

VaulTor is a technical design that aims to improve the anonymity and availability of hidden
services. While it does not change Tors underlying trust or threat model, legal and regulatory
constraints may nonetheless become a practical barrier to deployment. For example, a vault
operator could face legal risk for hosting third-party content that is alleged to be unlawful
(e.g., infringing or prohibited content), even if the operator cannot readily inspect the hosted
state. In addition, hidden service operators remain responsible for the services and content
they publish, regardless of whether hosting is delegated to a TEE-hosted vault node.

For vault operators, legal exposure is jurisdiction-dependent and may hinge on how local
law treats third-party hosting, infrastructure provision, and duties arising from notice or
investigation. Thus, even though VaulTor is designed so that the vault cannot inspect the
encrypted hidden service content state, prospective vault operators should treat legal risk
as non-negligible and evaluate deployability under applicable local law (e.g., jurisdictional
choice, operational policies, and whether participation is restricted to vetted deployments).

10.6 Incremental deployment:

The VaulTor architecture supports incremental deployment (albeit its strength is fully util-
ized when there are many vaults present on Tor). Vaults can register their VCHS themselves
to an HSDir similar to how Hidden Services are currently already registered. This allows
for a slow, optional adoption of VaulTor.

The client does need to install a small extension (as discussed in Sec 7.4) that compares
P, (or its hash) with the one advertised by the HS provider but this is a trivial add-on
and does not affect traditional HSes.

10.7 Multiple Vaults:

An HS provider may commission multiple vaults to hold their data. To this end, they may
download the Sy, and the x509 certificate from the HP of one vault and upload it to an HP
they have hosted on another vault. As clients use the certificate hash provided by an HS to
validate its identity (as described in Sec 7.4), they can be certain they are being served by
the same HS provider even if the onion URL of the HS is different. This will add redundancy
and fault tolerance to the HS provider’s content: if one vault becomes inactive, the other
vaults can continue to serve content.

17:19

NINeS 2026

17:20

716

717
718
719
720
721

722

723

724
725
726
727
728
729

730

731

732
733
734
735
736

737

738

739
740
741
742
743
744
745

746

Dont get caught, keep your Onions in a Vault

10.8 Strengthening client data privacy

In the VaulTor architecture, the host program is present inside a TEE and its measurement
(see Sec 2.1) is available to the client (in addition to the HS provider). The HS provider
may elect to make the code itself available to the client, allowing the client to inspect this
code. If the code is simple (for example, the code only stores and serves content to password
authenticated requests), then the client can upload private data to the server without having
to trust the HS provider as is necessary in the current Tor architecture.

10.9 Attacks against TEEs:

A wide variety of side-channel attacks exist that can target TEEs [68, 64, 61, 27, 54]. These
attacks aim to discern secrets contained inside the TEE, such as private keys, through
various means such as leveraging page faults. Vendors are prompt in mitigating side-channel
attacks [10] as the community uncovers those. Considering the research and development
that focuses on mitigating side-channel attacks [66, 43, 47, 37], architectural designs discount
such attacks from their threat models [63, 11, 50]. We also follow take the same course of
action (Sec 6).

10.10 Advancements/variations in TEE technology:

Although our current implementation utilizes Intel-SGX, VaulTor is a generic solution that
could theoretically support any TEE service. As newer TEE services (such as Intel-TDX [3])
emerge and improve, the strength and flexibility of VaulTor improve as well. In the future,
a diverse set of vaults utilizing differing TEE technologies could be built and tested. Other
promising implementations of TEEs are also being proposed [18, 26, 29, 34, 48]. We believe
that TEEs will become increasingly resistant to side-channel attacks.

11 Conclusion

We present VaulTor as an architectural solution that leverages TEE technology to reduce
the threat of deanonymization attacks against HS providers on the Tor network. To this end,
VaulTor introduces a new actor: the vault, which serves content on the HS provider’s behalf.
We show that VaulTor prevents several HS deanonymization attacks by utilizing the vault,
whilst preserving the same level of client anonymity as in the current architecture. This
is achieved without any noticeable performance degradation experienced by the client. We
also argue that vaults have the same security guarantees as HS providers in the conventional
Tor architecture.

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

77

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

H. lkram, R. Habib, M. Ali, Z. A. Uzmi

—— References

~N o A

10
11

12

13

14

15

16

17

18

19

20

21

22

23

Gramine,https://gramineproject.io/.

How Do Onion Services Work?, https://community.torproject.org/onion-services/
overview/.

Intel Trust Domain Extensions (Intel§ TDX), https://www.intel.com/content/www/us/en/
developer/articles/technical/intel-trust-domain-extensions.html.

iptables(8) - Linux man page, https://linux.die.net/man/8/iptables.

Tor, https://www.torproject.org/.

trickle(1) - Linux man page, https://linux.die.net/man/1/trickle. 2002.

Announcing the Vanguards Add-On for Onion Services, https://blog.torproject.org/
announcing-vanguards-add-onion-services/. 2014.

Global action against dark markets on Tor network, https://www.europol.europa.eu/
newsroom/news/global-action-against-dark-markets-tor-network. 2014.

Users - Tor Metrics, https://metrics.torproject.org/userstats-relay-country.html. 2022.
2023.

Adil Ahmad, Juhee Kim, Jaebaek Seo, Insik Shin, Pedro Fonseca, and Byoungyoung Lee.
Chancel: Efficient multi-client isolation under adversarial programs. 01 2021.

Masoud Akhoondi, Curtis Yu, and Harsha V. Madhyastha. Lastor: A low-latency as-aware
tor client. IEEE/ACM Trans. Netw., 22(6):17421755, dec 2014.

Mashael AlSabah, Kevin Bauer, Tariq Elahi, and Ian Goldberg. The path less travelled:
Overcoming tor’s bottlenecks with traffic splitting. In Emiliano De Cristofaro and Matthew
Wright, editors, Privacy Enhancing Technologies, pages 143—-163, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

Greubel Andre, Dmitrienko Alexandra, and Kounev Samuel. Smartor: Smarter tor with smart
contracts: Improving resilience of topology distribution in the tor network. In Proceedings of
the 84th Annual Computer Security Applications Conference, ACSAC ’18, page 677691, New
York, NY, USA, 2018. Association for Computing Machinery.

Robert Annessi and Martin Schmiedecker. Navigator: Finding faster paths to anonymity. In
2016 IEEE European Symposium on Security and Privacy (EuroSE&P), pages 214-226, 2016.
ARM Limited. Security technology: building a secure system using trustzone
technology http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/
PRD29-GENC-009492C_trustzone_security_whitepaper.pdf. 2018.

Arushi Arora and Christina Garman. Improving the performance and security of tor’s onion
services. Proceedings on Privacy Enhancing Technologies, 2025:531-552, 01 2025.

Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig, Matthias Klimmek,
Ahmad-Reza Sadeghi, and Emmanuel Stapf. CURE: A security architecture with CUstom-
izable and resilient enclaves. In 30th USENIX Security Symposium (USENIX Security 21),
pages 1073-1090. USENIX Association, August 2021.

Diogo Barradas, Nuno Santos, Luis Rodrigues, and Vitor Nunes. Poking a hole in the wall:
Efficient censorship-resistant internet communications by parasitizing on webrtc. In Proceed-
ings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, CCS
720, page 3548, New York, NY, USA, 2020. Association for Computing Machinery.

Armon Barton and Matthew Wright. Denasa: Destination-naive as-awareness in anonymous
communications. Proceedings on Privacy Enhancing Technologies, 2016(4):356-372, 2016.
David Belson. A recent spate of Internet disruptions, https://blog.cloudflare.com/
a-recent-spate-of-internet-disruptions-july-2024/. 2024.

David Belson. Q2 2024 Internet disruption summary, https://blog.cloudflare.com/
g2-2024-internet-disruption-summary/. 2024.

Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin.
Cryptology ePrint Archive, Paper 2014/349, 2014. https://eprint.iacr.org/2014/349.

17:21

NINeS 2026

https://gramineproject.io/
https://community.torproject.org/onion-services/overview/
https://community.torproject.org/onion-services/overview/
https://community.torproject.org/onion-services/overview/
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://linux.die.net/man/8/iptables
https://www.torproject.org/
https://linux.die.net/man/1/trickle
https://blog.torproject.org/announcing-vanguards-add-onion-services/
https://blog.torproject.org/announcing-vanguards-add-onion-services/
https://blog.torproject.org/announcing-vanguards-add-onion-services/
https://www.europol.europa.eu/newsroom/news/global-action-against-dark-markets-tor-network
https://www.europol.europa.eu/newsroom/news/global-action-against-dark-markets-tor-network
https://www.europol.europa.eu/newsroom/news/global-action-against-dark-markets-tor-network
 https://metrics.torproject.org/userstats-relay-country.html
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://blog.cloudflare.com/a-recent-spate-of-internet-disruptions-july-2024/
https://blog.cloudflare.com/a-recent-spate-of-internet-disruptions-july-2024/
https://blog.cloudflare.com/a-recent-spate-of-internet-disruptions-july-2024/
https://blog.cloudflare.com/q2-2024-internet-disruption-summary/
https://blog.cloudflare.com/q2-2024-internet-disruption-summary/
https://blog.cloudflare.com/q2-2024-internet-disruption-summary/
https://eprint.iacr.org/2014/349

17:22

798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847

848

Dont get caught, keep your Onions in a Vault

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Alex Biryukov, Ivan Pustogarov, and Ralf-Philipp Weinmann. Trawling for tor hidden ser-
vices: Detection, measurement, deanonymization. In 2018 IEEE Symposium on Security and
Privacy, pages 80-94, 2013.

Cecylia Bocovich, Arlo Breault, David Fifield, Serene, and Xiaokang Wang. Snowflake, a
censorship circumvention system using temporary WebRTC proxies. In 33rd USENIX Se-
curity Symposium (USENIX Security 24), pages 2635-2652, Philadelphia, PA, August 2024.
USENIX Association.

Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi, and Emmanuel Stapf.
Sanctuary: Arming trustzone with user-space enclaves. 01 2019.

Jo Van Bulck, Nico Weichbrodt, Ridiger Kapitza, Frank Piessens, and Raoul Strackx. Telling
your secrets without page faults: Stealthy page Table-Based attacks on enclaved execution.
In 26th USENIX Security Symposium (USENIX Security 17), pages 1041-1056, Vancouver,
BC, August 2017. USENIX Association.

Nicolas Christin. Traveling the silk road: a measurement analysis of a large anonymous online
marketplace. Proceedings of the 22nd international conference on World Wide Web, 2013.
Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal hardware extensions
for strong software isolation. In Proceedings of the 25th USENIX Conference on Security
Symposium, SEC’16, page 857874, USA, 2016. USENIX Association.

Hussein Darir, Hussein Sibai, Chin-Yu Cheng, Nikita Borisov, Geir Dullerud, and Sayan
Mitra. Mleflow: Learning from history to improve load balancing in tor. Proceedings on
Privacy Enhancing Technologies, 2022:75-104, 01 2022.

Tom Woller David Kaplan, Jeremy Powell. AMD memory encryption, https://developer.amd.
com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf. 2016.
Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The Second-Generation onion
router. In 18th USENIX Security Symposium (USENIX Security 04), San Diego, CA, August
2004. USENIX Association.

Joan Feigenbaum, Aaron Johnson, and Paul Syverson. Preventing active timing attacks in
low-latency anonymous communication. pages 166-183, 07 2010.

Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan Parno. Komodo: Using
verification to disentangle secure-enclave hardware from software. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP 17, page 287305, New York, NY, USA,
2017. Association for Computing Machinery.

Gabriel Figueira, Diogo Barradas, and Nuno Santos. Stegozoa: Enhancing webrtc covert
channels with video steganography for internet censorship circumvention. In Proceedings of
the 2022 ACM on Asia Conference on Computer and Communications Security, ASIA CCS
722, page 11541167, New York, NY, USA, 2022. Association for Computing Machinery.
Jamie Hayes and George Danezis. k-fingerprinting: A robust scalable website fingerprinting
technique. In 25th USENIX Security Symposium (USENIX Security 16), pages 1187-1203,
Austin, TX, August 2016. USENIX Association.

Zhou Hongwei, Ke Zhipeng, Zhang Yuchen, Wu Dangyang, and Yuan Jinhui. Tsgx: De-
feating sgx side channel attack with support of tpm. In 2021 Asia-Pacific Conference on
Communications Technology and Computer Science (ACCTCS), pages 192-196, 2021.
Alfonso lacovazzi, Daniel Frassinelli, and Yuval Elovici. The DUSTER attack: Tor onion
service attribution based on flow watermarking with track hiding. In 22nd International
Symposium on Research in Attacks, Intrusions and Defenses (RAID 2019), pages 213-225,
Chaoyang District, Beijing, September 2019. USENIX Association.

Alfonso Tacovazzi, Sanat Sarda, and Yuval Elovici. Inflow: Inverse network flow watermarking
for detecting hidden servers. In IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications, pages 747-755, 2018.

Intel. Intel software guard extensions programming reference, https://software.intel.com/
sites/default/files/managed/48/88/329298-002.pdf/. 2014.

https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf/
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf/
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf/

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

H. lkram, R. Habib, M. Ali, Z. A. Uzmi

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

Rob Jansen, Marc Juarez, Rafael Galvez, Tariq Elahi, and Claudia Diaz. Inside job: Applying
traffic analysis to measure tor from within. 01 2018.

Rob Jansen, Florian Tschorsch, Aaron Johnson, and Bjorn Scheuermann. The sniper attack:
Anonymously deanonymizing and disabling the tor network. In NDSS, 2014.

Yuan Jinhui, Zhou Hongwei, and Zhang Laishun. F-sgx: Next generation sgx for trusted
computing. In 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and
Computers (IPEC), pages 673-677, 2021.

Aaron Johnson, Rob Jansen, Nicholas Hopper, Aaron Segal, and Paul Syverson. Peerflow:
Secure load balancing in tor. Proceedings on Privacy Enhancing Technologies, 2017, 04 2017.
Seongmin Kim, Juhyeng Han, Jachyeong Ha, Taesoo Kim, and Dongsu Han. Sgx-tor: A
secure and practical tor anonymity network with sgx enclaves. IEEE/ACM Transactions on
Networking, 26(5):2174-2187, 2018.

Albert Kwon, Mashael AlSabah, David Lazar, Marc Dacier, and Srinivas Devadas. Circuit
fingerprinting attacks: Passive deanonymization of tor hidden services. In 24/th USENIX
Security Symposium (USENIX Security 15), pages 287302, Washington, D.C., August 2015.
USENIX Association.

Fan Lang, Wei Wang, Lingjia Meng, Jinggiang Lin, Qiongxiao Wang, and Linli Lu. Mole:
Mitigation of side-channel attacks against sgx via dynamic data location escape. In Pro-
ceedings of the 38th Annual Computer Security Applications Conference, ACSAC ’22, page
978988, New York, NY, USA, 2022. Association for Computing Machinery.

Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanovié¢, and Dawn Song. Keystone:
An open framework for architecting trusted execution environments. In Proceedings of the
Fifteenth FEuropean Conference on Computer Systems, EuroSys ’20, New York, NY, USA,
2020. Association for Computing Machinery.

Srdjan Matic, Platon Kotzias, and Juan Caballero. Caronte: Detecting location leaks for
deanonymizing tor hidden services. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, CCS 15, page 14551466, New York, NY, USA,
2015. Association for Computing Machinery.

J. Menetrey, M. Pasin, P. Felber, and V. Schiavoni. Twine: An embedded trusted runtime
for webassembly. In 2021 IEEE 87th International Conference on Data Engineering (ICDE),
pages 205-216, Los Alamitos, CA, USA, apr 2021. IEEE Computer Society.

Prateek Mittal and Nikita Borisov. Shadowwalker: Peer-to-peer anonymous communica-
tion using redundant structured topologies. In Proceedings of the 16th ACM Conference on
Computer and Communications Security, CCS 09, page 161172, New York, NY, USA, 2009.
Association for Computing Machinery.

Steven Murdoch. Hot or not: Revealing hidden services by their clock skew. pages 27-36, 01
2006.

Milad Nasr, Alireza Bahramali, and Amir Houmansadr. Deepcorr: Strong flow correlation
attacks on tor using deep learning. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’18, page 19621976, New York, NY, USA,
2018. Association for Computing Machinery.

Alexander Nilsson, Pegah Nikbakht Bideh, and Joakim Brorsson. A survey of published
attacks on intel sgx, 2020.

Rishab Nithyanand, Oleksii Starov, Phillipa Gill, Adva Zair, and Michael Schapira. Measuring
and mitigating as-level adversaries against tor. ArXiv, abs/1505.05173, 2016.

Shen Noether. Ring signature confidential transactions for monero. TACR Cryptology ePrint
Archive, 2015:1098, 2015.

Andriy Panchenko, Asya Mitseva, Martin Henze, Fabian Lanze, Klaus Wehrle, and Thomas
Engel. Analysis of fingerprinting techniques for tor hidden services. In Proceedings of the
2017 on Workshop on Privacy in the Electronic Society, WPES ’17, page 165175, New York,
NY, USA, 2017. Association for Computing Machinery.

17:23

NINeS 2026

17:24

900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930

931

Dont get caught, keep your Onions in a Vault

58

59

60

61

62

63

64

65

66

67

68

phobos. Using Tor hidden services for good, https://blog.torproject.org/
using-tor-hidden-services-good/. 2012.

Florentin Rochet, Ryan Wails, Aaron Johnson, Prateek Mittal, and Olivier Pereira. CLAPS:
Client-Location-Aware Path Selection in Tor, page 1734. Association for Computing Ma-
chinery, New York, NY, USA, 2020.

Komang Oka Saputra, Wei-Chung Teng, and Yi-Hao Chu. A clock skew replication attack
detection approach utilizing the resolution of system time. In 2015 IEEE/WIC/ACM Interna-
tional Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), volume 3,
pages 211-214, 2015.

Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena. Preventing
page faults from telling your secrets. In Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security, ASIA CCS 16, page 317328, New York, NY, USA,
2016. Association for Computing Machinery.

Yixin Sun, Anne Edmundson, Nick Feamster, Mung Chiang, and Prateek Mittal. Counter-
raptor: Safeguarding tor against active routing attacks. In 2017 IEEE Symposium on Security
and Privacy (SP), pages 977-992, 2017.

Yuanyuan Sun, Sheng Wang, Huorong Li, and Feifei Li. Building enclave-native storage
engines for practical encrypted databases. Proc. VLDB Endow., 14(6):10191032, feb 2021.
Jo Van Bulck, Frank Piessens, and Raoul Strackx. Sgx-step: A practical attack framework
for precise enclave execution control. In Proceedings of the 2nd Workshop on System Software
for Trusted Ezecution, SysTEX’17, New York, NY, USA, 2017. Association for Computing
Machinery.

Tao Wang, Kevin Bauer, Clara Forero, and Ian Goldberg. Congestion-aware path selection
for tor. In Angelos D. Keromytis, editor, Financial Cryptography and Data Security, pages
98-113, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

Jan Wichelmann, Anna Patschke, Luca Wilke, and Thomas Eisenbarth. Cipherfix: Mitigating
ciphertext side-channel attacks in software, 2023.

Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151(2014):1-32, 2014.

Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks: Deterministic
side channels for untrusted operating systems. In 2015 IEEE Symposium on Security and
Privacy, pages 640-656, 2015.

https://blog.torproject.org/using-tor-hidden-services-good/
https://blog.torproject.org/using-tor-hidden-services-good/
https://blog.torproject.org/using-tor-hidden-services-good/

	1 Introduction
	2 Background
	2.1 Trusted Execution Environments (TEEs)
	2.2 Conventional Tor architecture

	3 Related work
	4 Design Goals
	5 Alternate hosting options
	5.1 Using a static content hosting service
	5.2 Hosting on the cloud

	6 Threat Model
	7 VaulTor
	7.1 Architecture
	7.2 Protocol
	7.2.1 Host Program (HP) Creation
	7.2.2 Bootstrapping

	7.3 Enclave Isolation
	7.4 Client connection

	8 Attack surfaces
	8.1 HS provider Anonymity
	8.2 Client privacy
	8.3 Vault privacy

	9 Evaluation
	9.1 Known Attacks Deflected
	9.2 Performance
	9.2.1 Experimental setup
	9.2.2 Results
	9.2.3 Ethics

	10 Discussion
	10.1 Additional Anonymity Measures
	10.2 HS Provider Flexibility
	10.3 Incentives for Vault Node
	10.3.1 Monetary Incentives
	10.3.2 Altruistic Reasons

	10.4 Plausible Deniability for Vault
	10.5 Legal and deployability considerations
	10.6 Incremental deployment:
	10.7 Multiple Vaults:
	10.8 Strengthening client data privacy
	10.9 Attacks against TEEs:
	10.10 Advancements/variations in TEE technology:

	11 Conclusion

